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1 Introduction and summary

The fundamental ingredient in the Bagger-Lambert-Gustavsson (BLG) model [1–3], pro-

posed as the low-energy effective field theory on a stack of coincident M2-branes, is a

metric 3-Lie algebra V on which the matter fields take values. This means that V is a real

vector space with a symmetric inner product 〈−,−〉 and a trilinear, alternating 3-bracket

[−,−,−] : V × V × V → V obeying the fundamental identity [4]

[x, y, [z1, z2, z3]] = [[x, y, z1], z2, z3] + [z1, [x, y, z2], z3] + [z1, z2, [x, y, z3]] , (1.1)
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and the metricity condition

〈[x, y, z1], z2〉 = −〈z1, [x, y, z2]〉 , (1.2)

for all x, y, zi ∈ V . We say that V is indecomposable if it is not isomorphic to an orthogonal

direct sum of nontrivial metric 3-Lie algebras. Every indecomposable metric 3-Lie algebra

gives rise to a BLG model and this motivates their classification. It is natural to attempt

this classification in increasing index — the index of an inner product being the dimension

of the maximum negative-definite subspace. In other words, index 0 inner products are

positive-definite (called euclidean here), index 1 are lorentzian, et cetera. To this date there

is a classification up to index 2, which we now review.

It was conjectured in [5] and proved in [6] (see also [7, 8]) that there exists a unique

nonabelian indecomposable metric 3-Lie algebra of index 0. It is the simple 3-Lie algebra [4]

S4 with underlying vector space R
4, orthonormal basis e1, e2, e3, e4, and 3-bracket

[ei, ej , ek] =

4
∑

ℓ=1

εijkℓeℓ , (1.3)

where ε = e1 ∧ e2 ∧ e3 ∧ e4. Nonabelian indecomposable 3-Lie algebras of index 1 were

classified in [9] and are given either by

• the simple lorentzian 3-Lie algebra S3,1 with underlying vector space R
4, orthonormal

basis e0, e1, e2, e3 with e0 timelike, and 3-bracket

[eµ, eν , eρ] =

3
∑

σ=0

εµνρσsσeσ , (1.4)

where s0 = −1 and si = 1 for i = 1, 2, 3; or

• W (g), with underlying vector space g ⊕ Ru⊕ Rv, where g is a semisimple Lie alge-

bra with a choice of positive-definite invariant inner product, extended to W (g) by

declaring u, v ⊥ g and 〈u, u〉 = 〈v, v〉 = 0 and 〈u, v〉 = 1, and with 3-brackets

[u, x, y] = [x, y] and [x, y, z] = −〈[x, y], z〉 v , (1.5)

for all x, y, z ∈ g.

The latter metric 3-Lie algebras were discovered independently in [10–12] in the context of

the BLG model. The index 2 classification is presented in [13]. There we found two classes

of solutions, termed Ia and IIIb. The former class is of the form W (g), but where g is now

a lorentzian semisimple Lie algebra, whereas the latter class will be recovered as a special

case of the results in this paper and hence will be described in more detail below.

Let us now discuss the BLG model from a 3-algebraic perspective. The V -valued mat-

ter fields in the BLG model [1–3] comprise eight bosonic scalars X and eight fermionic

Majorana spinors Ψ in three-dimensional Minkowski space R
1,2. Triality allows one to take

the scalars X and fermions Ψ to transform respectively in the vector and chiral spinor rep-

resentations of the so(8) R-symmetry. These matter fields are coupled to a nondynamical
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gauge field A which is valued in Λ2V and described by a so-called twisted Chern-Simons

term in the Bagger-Lambert lagrangian [1, 3]. The inner product 〈−,−〉 on V is used to

describe the kinetic terms for the matter fields X and Ψ in the Bagger-Lambert lagrangian.

Therefore if the index of V is positive (i.e. not euclidean signature) then the associated BLG

model is not unitary as a quantum field theory, having ‘wrong’ signs for the kinetic terms for

those matter fields in the negative-definite directions on V , thus carrying negative energy.

Indeed, for the BLG model based on the index-1 3-Lie algebra W (g), one encounters

just this problem. Remarkably though, as noted in the pioneering works [10–12], here the

matter field components Xv and Ψv along precisely one of the two null directions (u, v)

in W (g) never appear in any of the interaction terms in the Bagger-Lambert lagrangian.

Since the interactions are governed only by the structure constants of the 3-Lie algebra

then this property simply follows from the absence of v on the left hand side of any of the

3-brackets in (1.5). Indeed the one null direction v spans the centre of W (g) and the linear

equations of motion for the matter fields along v force the components Xu and Ψu in the

other null direction u to take constant values (preservation of maximal supersymmetry in

fact requires Ψu = 0). By expanding around this maximally supersymmetric and gauge-

invariant vacuum defined by the constant expectation value of Xu, one can obtain a unitary

quantum field theory. Use of this strategy in [12] gave the first indication that the resulting

theory is nothing butN = 8 super Yang-Mills theory on R
1,2 with the euclidean semi-simple

gauge algebra g. The super Yang-Mills theory gauge coupling here being identified with

the SO(8)-norm of the constant Xu. This procedure is somewhat reminiscent of the novel

Higgs mechanism introduced in [14] in the context of the Bagger-Lambert theory based on

the euclidean Lie 3-algebra S4. In that case an N = 8 super Yang-Mills theory with su(2)

gauge algebra is obtained, but with an infinite set of higher order corrections suppressed

by inverse powers of the gauge coupling. As found in [12], the crucial difference is that

there are no such corrections present in the lorentzian case.

Of course, one must be wary of naively integrating out the free matter fields Xv and Ψv

in this way since their absence in any interaction terms in the Bagger-Lambert lagrangian

gives rise to an enhanced global symmetry that is generated by shifting them by con-

stant values. To account for this degeneracy in the action functional, in order to correctly

evaluate the partition function, one must gauge the shift symmetry and perform a BRST

quantisation of the resulting theory. Fixing this gauged shift symmetry allows one to set

Xv and Ψv equal to zero while the equations of motion for the new gauge fields sets Xu

constant and Ψu = 0. Indeed this more rigorous treatment has been carried out in [15, 16]

whereby the perturbative equivalence between the Bagger-Lambert theory based on W (g)

and maximally supersymmetric Yang-Mills theory with euclidean gauge algebra g was es-

tablished (see also [17]). Thus the introduction of manifest unitarity in the quantum field

theory has come at the expense of realising an explicit maximal superconformal symmetry

in the BLG model forW (g), i.e. scale-invariance is broken by a nonzero vacuum expectation

value for Xu. It is perhaps worth pointing out that the super Yang-Mills description seems

to have not captured the intricate structure of a particular ‘degenerate’ branch of the classi-

cal maximally supersymmetric moduli space in the BLG model for W (g) found in [9]. The

occurrence of this branch can be understood to arise from a degenerate limit of the theory

– 3 –
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wherein the scale Xu = 0 and maximal superconformal symmetry is restored. However,

as found in [15, 16], the maximally superconformal unitary theory obtained by expanding

around Xu = 0 describes a rather trivial free theory for eight scalars and fermions, whose

moduli space does not describe said degenerate branch of the original moduli space.

Consider now a general indecomposable metric 3-Lie algebra with index r of the form

V =
⊕r

i=1(Rui ⊕ Rvi) ⊕ W , where 〈ui, uj〉 = 0 = 〈vi, vj〉, 〈ui, vj〉 = δij and W is a

euclidean vector space. As explained in section 2.4 of [13], one can ensure that none of

the null components Xvi and Ψvi of the matter fields appear in any of the interactions

in the associated Bagger-Lambert lagrangian provided that no vi appear on the left hand

side of any of the 3-brackets on V . This guarantees one has an extra shift symmetry

for each of these null components suggesting that all the associated negative-norm states

in the spectrum of this theory can be consistently decoupled after gauging all the shift

symmetries and following BRST quantisation of the gauged theory. A more invariant way

of stating the aforementioned criterion is that V should admit a maximally isotropic centre:

that is, a subspace Z ⊂ V of dimension equal to the index of the inner product on V , on

which the inner product vanishes identically and which is central, so that [Z, V, V ] = 0

in the obvious notation. The null directions vi defined above along which we require the

extra shift symmetries are thus taken to provide a basis for Z. In [13] we classified all

indecomposable metric 3-Lie algebras of index 2 with a maximally isotropic centre. There

are nine families of such 3-Lie algebras, which were termed type IIIb in that paper. In the

present paper we will prove a structure theorem for general metric 3-Lie algebras which

admit a maximally isotropic centre, thus characterising them fully. Although the structure

theorem falls short of a classification, we will argue that it is the best possible result for

this problem. The bosonic contributions to the Bagger-Lambert lagrangians for such 3-

Lie algebras will be computed but we will not perform a rigorous analysis of the physical

theory in the sense of gauging the shift symmetries and BRST quantisation. We will

limit ourselves to expanding the theory around a suitable maximally supersymmetric and

gauge-invariant vacuum defined by a constant expectation value for Xui (with Ψui = 0).

This is the obvious generalisation of the procedure used in [12] for the lorentzian theory

and coincides with that used more recently in [18] for more general 3-Lie algebras. We

will comment explicitly on how all the finite-dimensional examples considered in section 4

of [18] can be recovered from our formalism.

As explained in sections 2.5 and 2.6 of [13], two more algebraic conditions are necessary

in order to interpret the BLG model based on a general metric 3-Lie algebra with maximally

isotropic centre as an M2-brane effective field theory. Firstly, the 3-Lie algebra should

admit a (nonisometric) conformal automorphism that can be used to absorb the formal

coupling dependence in the BLG model. In [13] we determined that precisely four of

the nine IIIb families of index 2 3-Lie algebras with maximally isotropic centre satisfy

this condition. Secondly, parity invariance of the BLG model requires the 3-Lie algebra to

admit an isometric antiautomorphism. This symmetry is expected of an M2-brane effective

field theory based on the assumption that it should arise as an IR superconformal fixed

point of N = 8 super Yang-Mills theory. In [13] we determined that each of the four IIIb

families of index 2 3-Lie algebras admitting said conformal automorphism also admitted

an isometric antiautomorphism.
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It is worth emphasising that the motivation for the two conditions above is distinct

from that which led us to demand a maximally isotropic centre. The first two are required

only for an M-theoretic interpretation while the latter is a basic physical consistency con-

dition to ensure that the resulting quantum field theory is unitary. Moreover, even given

a BLG model based on a 3-Lie algebra satisfying all three of these conditions, it is plain

to see that the procedure we shall follow must generically break the initial conformal

symmetry since it has introduced scales into the problem corresponding to the vacuum

expectation values of Xui . It is inevitable that this breaking of scale-invariance will also

be a feature resulting from a more rigorous treatment in terms of gauging shift symmetries

and BRST quantisation.

Thus we shall concentrate just on the unitarity condition and, for the purposes of this

paper, we will say that a metric 3-Lie algebra is (physically) admissible if it is indecom-

posable and admits a maximally isotropic centre. The first part of the present paper will

be devoted in essence to characterising finite-dimensional admissible 3-Lie algebras. The

second part will describe the general structure of the gauge theories which result from ex-

panding the BLG model based on these physically admissible 3-Lie algebras around a given

vacuum expectation value for Xui . Particular attention will be paid to explaining how the

3-Lie algebraic data translates into physical parameters of the resulting gauge theories.

This paper is organised as follows. Section 2 is concerned with the proof of theorem 2,

which is outlined at the start of that section. The theorem may be paraphrased as stating

that every finite-dimensional admissible 3-Lie algebra of index r > 0 is constructed as

follows. We start with the following data:

• for each α = 1, . . . , N , a nonzero vector 0 6= κα ∈ R
r with components κα

i , a positive

real number λα > 0 and a compact simple Lie algebra gα;

• for each π = 1, . . . ,M , a two-dimensional euclidean vector space Eπ with a complex

structure Hπ, and two linearly independent vectors ηπ, ζπ ∈ R
r;

• a euclidean vector space E0 and K ∈ Λ3
R

r ⊗ E0 obeying the quadratic equations

〈Kijn,Kkℓm〉 − 〈Kijm,Knkℓ〉 + 〈Kijℓ,Kmnk〉 − 〈Kijk,Kℓmn〉 = 0,

where 〈−,−〉 is the inner product on E0;

• and L ∈ Λ4
R

r.

On the vector space

V =
r

⊕

i=1

(Rui ⊕ Rvi) ⊕
N

⊕

α=1

gα ⊕
M

⊕

π=1

Eπ ⊕ E0,

we define the following inner product extending the inner product on Eπ and E0:

• 〈ui, vj〉 = δij , 〈ui, uj〉 = 0, 〈vi, vj〉 = 0 and ui, vj are orthogonal to the gα, Eπ and

E0; and

– 5 –
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• on each gα we take −λα times the Killing form.

This makes V above into an inner product space of index r. On V we define the following

3-brackets, with the tacit assumption that any 3-bracket not listed here is meant to vanish:

[ui, uj , uk] = Kijk +
r

∑

ℓ=1

Lijkℓvℓ

[ui, uj , x0] = −
r

∑

k=1

〈Kijk, x0〉 vk

[ui, uj , xπ] = (ηπ
i ζ

π
j − ηπ

j ζ
π
i )Hπxπ

[ui, xπ, yπ] = 〈Hπxπ, yπ〉
r

∑

j=1

(ηπ
i ζ

π
j − ηπ

j ζ
π
i )vj

[ui, xα, yα] = κα
i [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉
r

∑

i=1

κα
i vi,

(1.6)

for all x0 ∈ E0, xπ, yπ ∈ Eπ, and xα, yα, zα ∈ gα. The resulting metric 3-Lie algebra has a

maximally isotropic centre spanned by the vi. It is indecomposable provided that there is

no x0 ∈ E0 which is perpendicular to all the Kijk, whence in particular dimE0 ≤
(r
3

)

. The

only non-explicit datum in the above construction are the Kijk since they are subject to

certain quadratic equations. However we will see that these equations are trivially satisfied

for r < 5. Hence the above results constitutes, in principle, a classification for indices 3

and 4, extending the classification of index 2 in [13].

Using this structure theorem we are able to calculate the lagrangian for the BLG model

associated with a general physically admissible 3-Lie algebra. For the sake of clarity, we

shall focus on just the bosonic contributions since the resulting theories will have a canonical

maximally supersymmetric completion. Upon expanding this theory around the maximally

supersymmetric vacuum defined by constant expectation values Xui (with all the other

fields set to zero) we will obtain standard N = 8 supersymmetric (but nonconformal)

gauge theories with moduli parametrised by particular combinations of the data appearing

in theorem 2 and the vacuum expectation values Xui . It will be useful to think of the

vacuum expectation values Xui as defining a linear map, also denoted Xui : R
r → R

8,

sending ξ 7→ Xξ :=
∑r

i=1 ξiX
ui . Indeed it will be found that the physical gauge theory

parameters are naturally expressed in terms of components in the image of this map. That

is, in general, we find that neither the data in theorem 2 nor the vacuum expectation

values Xui on their own appear as physical parameters which instead arise from certain

projections of the components of the data in theorem 2 onto Xui in R
8.

The resulting Bagger-Lambert lagrangian will be found to factorise into a sum of

decoupled maximally supersymmetric gauge theories on each of the euclidean components

gα, Eπ and E0. The physical content and moduli on each component can be summarised

as follows:

– 6 –
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• On each gα one has an N = 8 super Yang-Mills theory. The gauge symmetry is

based on the simple Lie algebra gα. The coupling constant is given by ‖Xκα‖, which

denotes the SO(8)-norm of the image of κα ∈ R
r under the linear map Xui . The

seven scalar fields take values in the hyperplane R
7 ⊂ R

8 which is orthogonal to

the direction defined by Xκα
. (If Xκα

= 0, for a given value of α, one obtains a

degenerate limit corresponding to a maximally superconformal free theory for eight

scalar fields and eight fermions valued in gα.)

• On each plane Eπ one has a pair of identical free abelian N = 8 massive vector

supermultiplets. The bosonic fields in each such supermultiplet comprise a massive

vector and six massive scalars. The mass parameter is given by ‖Xηπ ∧Xζπ‖, which

corresponds to the area of the parallelogram in R
8 defined by the vectors Xηπ

and

Xζπ
in the image of the map Xui . The six scalar fields inhabit the R

6 ⊂ R
8 which

is orthogonal to the plane spanned by Xηπ
and Xζπ

. (If ‖Xηπ ∧ Xζπ‖ = 0, for a

given value of π, one obtains a degenerate massless limit where the vector is dualised

to a scalar, again corresponding to a maximally superconformal free theory for eight

scalar fields and eight fermions valued in Eπ.) Before gauge-fixing, this theory can

be understood as an N = 8 super Yang-Mills theory with gauge symmetry based on

the four-dimensional Nappi-Witten Lie algebra d(Eπ,R). Moreover we explain how

it can be obtained from a particular truncation of an N = 8 super Yang-Mills theory

with gauge symmetry based on any euclidean semisimple Lie algebra with rank 2,

which may provide a more natural D-brane interpretation.

• On E0 one has a decoupled N = 8 supersymmetric theory involving eight free scalar

fields and an abelian Chern-Simons term. Since none of the matter fields are charged

under the gauge field in this Chern-Simons term then its overall contribution is es-

sentially trivial on R
1,2.

Note added. During the completion of this work the paper [18] appeared whose results

have noticeable overlap with those found here. In particular, they also describe the physical

properties of BLG models based on certain finite-dimensional 3-Lie algebras with index

greater than 1 admitting a maximally isotropic centre. The structure theorem we prove

here for such 3-Lie algebras allows us to extend some of their results and make general

conclusions about the nature of those unitary gauge theories which arise from BLG models

based on physically admissible 3-Lie algebras. In terms of our data in theorem 2, the explicit

finite-dimensional examples considered in section 4 of [18] all have Kijk = 0 = Lijkl with

only one Jij nonzero. This is tantamount to taking the index r = 2. The example in

sections 4.1 and 4.2 of [18] has κα = 0 (i.e. no gα part) while the example in section 4.3 has

κα = (1, 0)t. These are isomorphic to two of the four physically admissible IIIb families of

index 2 3-Lie algebras found in [13].

2 Towards a classification of admissible metric 3-Lie algebras

In this section we will prove a structure theorem for finite-dimensional indecomposable

metric 3-Lie algebras admitting a maximally isotropic centre. We think it is of pedagogical

– 7 –
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value to first rederive the similar structure theorem for metric Lie algebras using a method

similar to the one we will employ in the more involved case of metric 3-Lie algebras.

2.1 Metric Lie algebras with maximally isotropic centre

Recall that a Lie algebra g is said to be metric, if it possesses an ad-invariant scalar product.

It is said to be indecomposable if it is not isomorphic to an orthogonal direct sum of metric

Lie algebras (of positive dimension). Equivalently, it is indecomposable if there are no

proper ideals on which the scalar product restricts nondegenerately. A metric Lie algebra

g is said to have index r, if the ad-invariant scalar product has index r, which is the same as

saying that the maximally negative-definite subspace of g is r-dimensional. In this section

we will prove a structure theorem for finite-dimensional indecomposable metric Lie algebras

admitting a maximally isotropic centre, a result originally due to Kath and Olbrich [19].

2.1.1 Preliminary form of the Lie algebra

Let g be a finite-dimensional indecomposable metric Lie algebra of index r > 0 admitting

a maximally isotropic centre. Let vi, i = 1, . . . , r, denote a basis for the centre. The inner

product is such that 〈vi, vj〉 = 0. Since the inner product on g is nondegenerate, there exist

ui, i = 1, . . . , r, which obey 〈ui, vj〉 = δij . It is always possible to choose the ui such that

〈ui, uj〉 = 0. Indeed, if the ui do not span a maximally isotropic subspace, then redefine

them by ui 7→ ui − 1
2

∑r
j=1 〈ui, uj〉 vj so that they do. The perpendicular complement to

the 2r-dimensional subspace spanned by the ui and the vj is then positive-definite. In

summary, g admits the following vector space decomposition

g =

r
⊕

i=1

(Rui ⊕ Rvi) ⊕ r, (2.1)

where r is the positive-definite subspace of g perpendicular to all the ui and vj.

Metricity then implies that the most general Lie brackets on g are of the form

[ui, uj ] = Kij +

r
∑

k=1

Lijkvk

[ui, x] = Jix−
r

∑

j=1

〈Kij , x〉 vj

[x, y] = [x, y]r −
r

∑

i=1

〈x, Jiy〉 vi,

(2.2)

where Kij = −Kji ∈ r, Lijk ∈ R is totally skewsymmetric in the indices, Ji ∈ so(r) and

[−,−]r : r × r → r is bilinear and skewsymmetric. Metricity and the fact that the vi are

central, means that no ui can appear on the right-hand side of a bracket. Finally, metricity

also implies that

〈[x, y]r, z〉 = 〈x, [y, z]r〉 , (2.3)

for all x, y, z ∈ r.

– 8 –
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It is not hard to demonstrate that the Jacobi identity for g is equivalent to the following

identities on [−,−]r, Ji and Kij , whereas Lijk is unconstrained:

[x, [y, z]r]r − [[x, y]r, z]r − [y, [x, z]r]r = 0 (2.4a)

Ji[x, y]r − [Jix, y]r − [x, Jiy]r = 0 (2.4b)

JiJjx− JjJix− [Kij , x]r = 0 (2.4c)

JiKjk + JjKki + JkKij = 0 (2.4d)

〈Kℓi,Kjk〉 + 〈Kℓj,Kki〉 + 〈Kℓk,Kij〉 = 0, (2.4e)

for all x, y, z ∈ r.

2.1.2 r is abelian

Equation (2.4a) says that r is a Lie algebra under [−,−]r, which because of equation (2.3) is

metric. Being positive-definite, it is reductive, whence an orthogonal direct sum r = s⊕ a,

where s is semisimple and a is abelian. We will show that for an indecomposable g, we are

forced to take s = 0, by showing that g = s ⊕ s⊥ as a metric Lie algebra.

Equation (2.4b) says that Ji is a derivation of r, which we know to be skewsymmetric.

The Lie algebra of skewsymmetric derivations of r is given by ad s⊕so(a). Therefore under

this decomposition, we may write Ji = ad zi + Ja
i , for some unique zi ∈ s and Ja

i ∈ so(a).

Decompose Kij = Ks
ij +Ka

ij , with Ks
ij ∈ s and Ka

ij ∈ a. Then equation (2.4c) becomes

the following two conditions

[zi, zj ]r = Ks
ij (2.5)

and

[Ja
i , J

a
j ] = 0. (2.6)

One can now check that the s-component of the Jacobi identity for g is automatically

satisfied, whereas the a-component gives rise to the two equations

Ja
i K

a
jk + Ja

jK
a
ki + Ja

kK
a
ij = 0 (2.7)

and

〈

Ka
ℓi,K

a
jk

〉

+
〈

Ka
ℓj,K

a
ki

〉

+
〈

Ka
ℓk,K

a
ij

〉

= 0. (2.8)

We will now show that g ∼= s ⊕ s⊥, which violates the indecomposability of g unless

s = 0. Consider the isometry ϕ of the vector space g defined by

ϕ(ui) = ui − zi −
1

2

r
∑

j=1

〈zi, zj〉 vj

ϕ(vi) = vi

ϕ(x) = x+

r
∑

i=1

〈zi, x〉 vi,

(2.9)
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for all x ∈ r. Notice that if x ∈ a, then ϕ(x) = x. It is a simple calculation to see that for

all x, y ∈ s,

[ϕ(ui), ϕ(x)] = 0 and [ϕ(x), ϕ(y)] = ϕ([x, y]r). (2.10)

In other words, the image of s under ϕ is a Lie subalgebra of g isomorphic to s and com-

muting with its perpendicular complement in g. In other words, as a metric Lie algebra

g ∼= s ⊕ s⊥, violating the decomposability of g unless s = 0.

In summary, we have proved the following

Lemma 1. Let g be a finite-dimensional indecomposable metric Lie algebra with index

r > 0 and admitting a maximally isotropic centre. Then as a vector space

g =
r

⊕

i=1

(Rui ⊕ Rvi) ⊕ E, (2.11)

where E is a euclidean space, ui, vi ⊥ E and 〈ui, vj〉 = δij , 〈ui, uj〉 = 〈vi, vj〉 = 0. Moreover

the Lie bracket is given by

[ui, uj ] = Kij +

r
∑

k=1

Lijkvk

[ui, x] = Jix−
r

∑

j=1

〈Kij , x〉 vj

[x, y] = −
r

∑

i=1

〈x, Jiy〉 vi,

(2.12)

where Kij = −Kji ∈ E, Lijk ∈ R is totally skewsymmetric in its indices, Ji ∈ so(E) and

in addition obey the following conditions:

JiJj − JjJi = 0 (2.13a)

JiKjk + JjKki + JkKij = 0 (2.13b)

〈Kℓi,Kjk〉 + 〈Kℓj,Kki〉 + 〈Kℓk,Kij〉 = 0. (2.13c)

The analysis of the above equations will take the rest of this section, until we arrive

at the desired structure theorem.

2.1.3 Solving for the Ji

Equation (2.13a) says that the Ji ∈ so(E) are mutually commuting, whence they span an

abelian subalgebra h ⊂ so(E). Since E is positive-definite, E decomposes as the following

orthogonal direct sum as a representation of h:

E =

s
⊕

π=1

Eπ ⊕ E0, (2.14)

where

E0 = {x ∈ E|Jix = 0 ∀i} (2.15)
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and each Eπ is a two-dimensional real irreducible representation of h with certain nonzero

weight. Let (Hπ) denote the basis for h where

HπH̺ =

{

0 if π 6= ̺,

−Ππ if π = ̺,
(2.16)

where Ππ ∈ End(E) is the orthogonal projector onto Eπ. Relative to this basis we can

then write Ji =
∑

π J
π
i Hπ, for some real numbers Jπ

i .

2.1.4 Solving for the Kij

Since Kij ∈ E, we may decompose according to (2.14) as

Kij =

s
∑

π=1

Kπ
ij +K0

ij . (2.17)

We may identify each Eπ with a complex line where Hπ acts by multiplication by i. This

turns the complex number Kπ
ij into one component of a complex bivector Kπ ∈ Λ2

C
r.

Equation (2.13b) splits into one equation for each Kπ and that equation says that

Jπ
i K

π
jk + Jπ

j K
π
ki + Jπ

kK
π
ij = 0, (2.18)

or equivalently that Jπ ∧ Kπ = 0, which has as unique solution Kπ = Jπ ∧ tπ, for some

tπ ∈ R
r. In other words,

Kπ
ij = Jπ

i t
π
j − Jπ

j t
π
i . (2.19)

Now consider the following vector space isometry ϕ : g → g, defined by

ϕ(ui) = ui − ti −
1

2

r
∑

j=1

〈ti, tj〉 vj

ϕ(vi) = vi

ϕ(x) = x+

r
∑

i=1

〈ti, x〉 vi,

(2.20)

for all x ∈ E, where ti ∈ E and hence ti =
∑s

π=1 t
π
i + t0i . Under this isometry the form of

the Lie algebra remains invariant, but Kij changes as

Kij 7→ Kij − Jitj + Jjti (2.21)

and Lijk changes in a manner which need not concern us here. Therefore we see that Kπ
ij

has been put to zero via this transformation, whereas K0
ij remains unchanged. In other

words, we can assume without loss of generality that Kij ∈ E0, so that JiKkl = 0, while

still being subject to the quadratic equation (2.13c).

In summary, we have proved the following theorem, originally due to Kath and Ol-

brich [19]:
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Theorem 1. Let g be a finite-dimensional indecomposable metric Lie algebra of index

r > 0 admitting a maximally isotropic centre. Then as a vector space

g =

r
⊕

i=1

(Rui ⊕ Rvi) ⊕
s

⊕

π=1

Eπ ⊕E0, (2.22)

where all direct sums but the one between Rui and Rvi are orthogonal and the inner product

is as in lemma 1. Let 0 6= Jπ ∈ R
r, Kij ∈ E0 and Lijk ∈ R and assume that the Kij obey

the following quadratic relation

〈Kℓi,Kjk〉 + 〈Kℓj ,Kki〉 + 〈Kℓk,Kij〉 . = 0. (2.23)

Then the Lie bracket of g is given by

[ui, uj ] = Kij +

r
∑

k=1

Lijkvk

[ui, x] = Jπ
i Hπx

[ui, z] = −
r

∑

j=1

〈Kij, z〉 vj

[x, y] = −
r

∑

i=1

〈x, Jπ
i Hπy〉 vi,

(2.24)

where x, y ∈ Eπ and z ∈ E0. Furthermore, indecomposability forces the Kij to span all of

E0, whence dimE0 ≤
(

r
2

)

.

It should be remarked that the Lijk are only defined up to the following transformation

Lijk 7→ Lijk + 〈Kij , tk〉 + 〈Kki, tj〉 + 〈Kjk, ti〉 , (2.25)

for some ti ∈ E0.

It should also be remarked that the quadratic relation (2.23) is automatically satisfied

for index r ≤ 3, whereas for index r ≥ 4 it defines an algebraic variety. In that sense,

the classification problem for indecomposable metric Lie algebras admitting a maximally

isotropic centre is not tame for index r > 3.

2.2 Metric 3-Lie algebras with maximally isotropic centre

After the above warm-up exercise, we may now tackle the problem of interest, namely the

classification of finite-dimensional indecomposable metric 3-Lie algebras with maximally

isotropic centre. The proof is not dissimilar to that of theorem 1, but somewhat more

involved and requires new ideas. Let us summarise the main steps in the proof.

1. In section 2.2.1 we write down the most general form of a metric 3-Lie algebra V

consistent with the existence of a maximally isotropic centre Z. As a vector space,
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V = Z ⊕ Z∗ ⊕W , where Z and Z∗ are nondegenerately paired and W is positive-

definite. Because Z is central, the 4-form F (x, y, z, w) := 〈[x, y, z], w〉 on V defines

an element in Λ4(W ⊕ Z). The decomposition

Λ4(W ⊕ Z) = Λ4W ⊕
(

Λ3W ⊗ Z
)

⊕
(

Λ2W ⊗ Λ2Z
)

⊕
(

W ⊗ Λ3Z
)

⊕ Λ4Z (2.26)

induces a decomposition of F =
∑4

a=0 Fa, where Fa ∈ Λ4−aW ⊗ ΛaZ, where the

component F4 is unconstrained.

2. The component F0 defines the structure of a metric 3-Lie algebra on W which, if V

is indecomposable, must be abelian, as shown in section 2.2.2.

3. The component F1 defines a compatible family [−,−]i of reductive Lie algebras on

W . In section 2.2.3 we show that they all are proportional to a reductive Lie algebra

structure g ⊕ z on W , where g is semisimple and z is abelian.

4. In section 2.2.4 we show that the component F2 defines a family Jij of commuting

endomorphisms spanning an abelian Lie subalgebra a < so(z). Under the action of a,

z breaks up into a direct sum of irreducible 2-planes Eπ and a euclidean vector space

E0 on which the Jij act trivially.

5. In section 2.2.5 we show that the component F3 defines elements Kijk ∈ E0 which

are subject to a quadratic equation.

2.2.1 Preliminary form of the 3-algebra

Let V be a finite-dimensional metric 3-Lie algebra with index r > 0 and admitting a

maximally isotropic centre. Let vi, i = 1, . . . , r, denote a basis for the centre. Since

the centre is (maximally) isotropic, 〈vi, vj〉 = 0, and since the inner product on V is

nondegenerate, there exists ui, i = 1, . . . , r satisfying 〈ui, vj〉 = δij . Furthermore, it is

possible to choose the ui such that 〈ui, uj〉 = 0. The perpendicular complement W of the

2r-dimensional subspace spanned by the ui and vi is therefore positive definite. In other

words, V admits a vector space decomposition

V =
r

⊕

i=1

(Rui ⊕ Rvi) ⊕W. (2.27)

Since the vi are central, metricity of V implies that the ui cannot appear in the right-hand

side of any 3-bracket. The most general form for the 3-bracket for V consistent with V
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being a metric 3-Lie algebra is given for all x, y, z ∈W by

[ui, uj , uk] = Kijk +
r

∑

ℓ=1

Lijkℓvℓ

[ui, uj , x] = Jijx−
r

∑

k=1

〈Kijk, x〉 vk

[ui, x, y] = [x, y]i −
r

∑

j=1

〈x, Jijy〉 vj

[x, y, z] = [x, y, z]W −
r

∑

i=1

〈[x, y]i, z〉 vi,

(2.28)

where Jij ∈ so(W ), Kijk ∈ W and Lijkℓ ∈ R are skewsymmetric in their indices, [−,−]i :

W ×W →W is an alternating bilinear map which in addition obeys

〈[x, y]i, z〉 = 〈x, [y, z]i〉 , (2.29)

and [−,−,−]W : W ×W ×W →W is an alternating trilinear map which obeys

〈[x, y, z]W , w〉 = −〈[x, y,w]W , z〉 . (2.30)

The following lemma is the result of a straightforward, if somewhat lengthy, calculation.

Lemma 2. The fundamental identity (1.1) of the 3-Lie algebra V defined by (2.28) is

equivalent to the following conditions, for all t, w, x, y, z ∈W :

[t, w, [x, y, z]W ]W = [[t, w, x]W , y, z]W +[x, [t, w, y]W , z]W +[x, y, [t, w, z]W ]W
(2.31a)

[w, [x, y, z]W ]i = [[w, x]i, y, z]W + [x, [w, y]i, z]W + [x, y, [w, z]i]W (2.31b)

[x, y, [z, t]i]W = [z, t, [x, y]i]W + [[x, y, z]W , t]i + [z, [x, y, t]W ]i (2.31c)

Jij [x, y, z]W = [Jijx, y, z]W + [x, Jijy, z]W + [x, y, Jijz]W (2.31d)

Jij [x, y, z]W −[x, y, Jijz]W = [[x, y]i, z]j − [[x, y]j , z]i (2.31e)

[x, y,Kijk]W = Jjk[x, y]i + Jki[x, y]j + Jij [x, y]k (2.31f)

[Jijx, y, z]W = [[x, y]i, z]j + [[y, z]j , x]i + [[z, x]i, y]j (2.31g)

Jij [x, y, z]W = [z, [x, y]j ]i + [x, [y, z]j ]i + [y, [z, x]j ]i (2.31h)

[x, y,Kijk]W = Jij [x, y]k − [Jijx, y]k − [x, Jijy]k (2.31i)

Jik[x, y]j − Jij [x, y]k = [Jjkx, y]i + [x, Jjky]i (2.31j)

[x, Jjky]i = [Jijx, y]k + [Jkix, y]j + Jjk[x, y]i (2.31k)

[Kijk, x]ℓ = [Kℓij , x]k + [Kℓjk, x]i + [Kℓki, x]j (2.31l)

[Kijk, x]ℓ − [Kijℓ, x]k = (JijJkℓ − JkℓJij) x (2.31m)

[x,Kjkℓ]i = (JjkJiℓ + JkℓJij + JjℓJki)x (2.31n)

JimKjkℓ = JijKkℓm + JikKℓmj + JiℓKjkm (2.31o)
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JijKkℓm = JℓmKijk + JmkKijℓ + JkℓKijm (2.31p)

〈Kijm,Knkℓ〉+〈Kijk,Kℓmn〉 = 〈Kijn,Kkℓm〉 + 〈Kijℓ,Kmnk〉 . (2.31q)

Of course, not all of these equations are independent, but we will not attempt to select

a minimal set here, since we will be able to dispense with some of the equations easily.

2.2.2 W is abelian

Equation (2.31a) says that W becomes a 3-Lie algebra under [−,−,−]W which is metric

by (2.30). Since W is positive-definite, it is reductive [6–9], whence isomorphic to an

orthogonal direct sum W = S ⊕A, where S is semisimple and A is abelian. Furthermore,

S is an orthogonal direct sum of several copies of the unique positive-definite simple 3-Lie

algebra S4 [4, 20]. We will show that as metric 3-Lie algebras V = S ⊕ S⊥, whence if V is

indecomposable then S = 0 and W = A is abelian as a 3-Lie algebra. This is an extension

of the result in [9] by which semisimple 3-Lie algebras S factorise out of one-dimensional

double extensions, and we will, in fact, follow a similar method to the one in [9] by which

we perform an isometry on V which manifestly exhibits a nondegenerate ideal isomorphic

to S as a 3-Lie algebra.

Consider then the isometry ϕ : V → V , defined by

ϕ(vi) = vi ϕ(ui) = ui − si −
1

2

r
∑

j=1

〈si, sj〉 vj ϕ(x) = x+

r
∑

i=1

〈si, x〉 vi, (2.32)

for x ∈W and for some si ∈W . (This is obtained by extending the linear map vi → vi and

ui 7→ ui − si to an isometry of V .) Under ϕ the 3-brackets (2.28) take the following form

[ϕ(ui), ϕ(uj), ϕ(uk)] = ϕ(Kϕ
ijk) +

r
∑

ℓ=1

Lϕ
ijkℓvℓ

[ϕ(ui), ϕ(uj), ϕ(x)] = ϕ(Jϕ
ijx) −

r
∑

k=1

〈

Kϕ
ijk, x

〉

vk

[ϕ(ui), ϕ(x), ϕ(y)] = ϕ([x, y]ϕi ) −
r

∑

j=1

〈

x, Jϕ
ijy

〉

vj

[ϕ(x), ϕ(y), ϕ(z)] = ϕ([x, y, z]W ) −
r

∑

i=1

〈[x, y]ϕi , z〉 vi,

(2.33)

where

[x, y]ϕi = [x, y]i + [si, x, y]W

Jϕ
ijx = Jijx+ [si, x]j − [sj , x]i + [si, sj , x]W

Kϕ
ijk = Kijk − Jijsk − Jjksi − Jkisj + [si, sj ]k + [sj, sk]i + [sk, si]j − [si, sj , sk]W

Lϕ
ijkℓ = Lijkℓ + 〈Kjkℓ, si〉 − 〈Kkℓi, sj〉 + 〈Kℓij , sk〉 − 〈Kijk, sℓ〉

− 〈si, Jkℓsj〉 − 〈sk, Jjℓsi〉 − 〈sj, Jiℓsk〉 + 〈sℓ, Jjksi〉 + 〈sℓ, Jkisj〉 + 〈sℓ, Jijsk〉
+ 〈[si, sj ]ℓ, sk〉 − 〈[si, sj ]k, sℓ〉 − 〈[sk, si]j , sℓ〉 − 〈[sj, sk]i, sℓ〉 + 〈[si, sj , sk]W , sℓ〉 .

(2.34)
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Lemma 3. There exists si ∈ S such that the following conditions are met for all x ∈ S:

[x,−]ϕi = 0 Jϕ
ijx = 0

〈

Kϕ
ijk, x

〉

= 0. (2.35)

Assuming for a moment that this is the case, the only nonzero 3-brackets involving

elements in ϕ(S) are

[ϕ(x), ϕ(y), ϕ(z)] = ϕ([x, y, z]W ), (2.36)

and this means that ϕ(S) is a nondegenerate ideal of V , whence V = ϕ(S) ⊕ ϕ(S)⊥. But

this violates the indecomposability of V , unless S = 0.

Proof of the lemma. To show the existence of the si, let us decompose S = S
(1)
4 ⊕· · ·⊕S(m)

4

into m copies of the unique simple positive-definite 3-Lie algebra S4. As shown in [9,

section 3.2], since Jij and [x,−]i define skewsymmetric derivations of W , they preserve the

decomposition of W into S ⊕A and that of S into its simple factors. One consequence of

this fact is that Jijx ∈ S for all x ∈ S and [x, y]i ∈ S for all x, y ∈ S, and similarly if we

substitute S for any of its simple factors in the previous statement. Notice in addition that

putting i = j in equation (2.31g), [−,−]i obeys the Jacobi identity. Hence on any one of the

simple factors of S — let’s call it generically S4 — the bracket [−,−]i defines the structure of

a four-dimensional Lie algebra. This Lie algebra is metric by equation (2.29) and positive

definite. There are (up to isomorphism) precisely two four-dimensional positive-definite

metric Lie algebras: the abelian Lie algebra and so(3) ⊕ R. In either case, as shown in [9,

section 3.2], there exists a unique si ∈ S4 such that [si, x, y]W = [x, y]i for x, y ∈ S4. (In

the former case, si = 0.) Since this is true for all simple factors, we conclude that there

exists si ∈ S such that [si, x, y]W = [x, y]i for x, y ∈ S and for all i.

Now equation (2.31g) says that for all x, y, z ∈ S,

[Jijx, y, z]W = [[x, y]i, z]j + [[y, z]j , x]i + [[z, x]i, y]j

= [sj, [si, x, y]W , z]W + [si, [sj, y, z]W , x]W + [sj , [si, z, x]W , y]W

= [[si, sj , x]W , y, x]W , using (2.31a)

which implies that Jijx− [si, sj, x]W centralises S, and thus is in A. However, for x ∈ S,

both Jijx ∈ S and [si, sj , x]W ∈ S, so that Jijx = [si, sj , x]W . Similarly, equation (2.31i)

says that for all x, y ∈ S,

[x, y,Kijk]W =Jij [x, y]k − [Jijx, y]k − [x, Jijy]k

=[si, sj, [sk, x, y]W ]W −[sk, [si, sj , x]W , y]W −[sk, x, [si, sjy]W ]W

=[[si, sj, sk]W , x, y]W , using (2.31a)

which implies that Kijk − [si, sj , sk]W centralises S, whence Kijk− [si, sj , sk]W = KA
ijk ∈ A.

Finally, using the explicit formulae for Jϕ
ij and Kϕ

ijk in equation (2.34), we see that for all

all x ∈ S,

Jϕ
ijx = Jijx+ [si, x]j − [sj , x]i + [si, sj, x]W

= [si, sj, x]W + [sj, si, x]W − [si, sj, x]W + [si, sj , x]W = 0
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and

Kϕ
ijk = Kijk − Jijsk − Jjksi − Jkisj + [si, sj ]k + [sj, sk]i + [sk, si]j − [si, sj , sk]W

= KA
ijk + [si, sj , sk]W − [si, sj , sk]W − [sj, sk, si]W − [sk, si, sj ]W

+ [sk, si, sj ]W + [si, sj, sk]W + [sj, sk, si]W − [si, sj , sk]W = KA
ijk,

whence
〈

Kϕ
ijk, x

〉

= 0 for all x ∈ S.

We may summarise the above discussion as follows.

Lemma 4. Let V be a finite-dimensional indecomposable metric 3-Lie algebra of index

r > 0 with a maximally isotropic centre. Then as a vector space

V =
r

⊕

i=1

(Rui ⊕ Rvi) ⊕W, (2.37)

where W is positive-definite, ui, vi ⊥ W , 〈ui, uj〉 = 0, 〈vi, vj〉 = 0 and 〈ui, vj〉 = δij . The

vi span the maximally isotropic centre. The nonzero 3-brackets are given by

[ui, uj , uk] = Kijk +
r

∑

ℓ=1

Lijkℓvℓ

[ui, uj , x] = Jijx−
r

∑

k=1

〈Kijk, x〉 vk

[ui, x, y] = [x, y]i −
r

∑

j=1

〈x, Jijy〉 vj

[x, y, z] = −
r

∑

i=1

〈[x, y]i, z〉 vi,

(2.38)

for all x, y, z ∈W and for some Lijkℓ ∈ R, Kijk ∈W , Jij ∈ so(W ), all of which are totally

skewsymmetric in their indices, and bilinear alternating brackets [−,−]i : W ×W → W

satisfying equation (2.29). Furthermore, the fundamental identity of the 3-brackets (2.38)

is equivalent to the following conditions on Kijk, Jij and [−,−]i:

[x, [y, z]i]j = [[x, y]j , z]i + [y, [x, z]j ]i (2.39a)

[[x, y]i, z]j = [[x, y]j , z]i (2.39b)

Jij [x, y]k = [Jijx, y]k + [x, Jijy]k (2.39c)

0 = Jjℓ[x, y]i + Jℓi[x, y]j + Jij [x, y]ℓ (2.39d)

[Kijk, x]ℓ−[Kijℓ, x]k = (JijJkℓ − JkℓJij)x (2.39e)

[x,Kjkℓ]i = (JjkJiℓ + JkℓJij + JjℓJki)x (2.39f)

JijKkℓm = JℓmKijk + JmkKijℓ + JkℓKijm (2.39g)

0 = 〈Kijn,Kkℓm〉+〈Kijℓ,Kmnk〉−〈Kijm,Knkℓ〉−〈Kijk,Kℓmn〉 .
(2.39h)
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There are less equations in (2.39) than are obtained from (2.31) by simply making W

abelian. It is not hard to show that the equations in (2.39) imply the rest. The study of

equations (2.39) will take us until the end of this section. The analysis of these conditions

will break naturally into several steps. In the first step we will solve equations (2.39a)

and (2.39b) for the [−,−]i. We will then solve equations (2.39c) and (2.39d), which will

turn allow us to solve equations (2.39e) and (2.39f) for the Jij . Finally we will solve

equation (2.39g). We will not solve equation (2.39h). In fact, this equation defines an

algebraic variety (an intersection of conics) which parametrises these 3-algebras.

2.2.3 Solving for the [−,−]i

Condition (2.39a) for i = j says that [−,−]i defines a Lie algebra structure on W , denoted

gi. By equation (2.29), gi is a metric Lie algebra. Since the inner product on W is positive-

definite, gi is reductive, whence gi = [gi, gi]⊕zi, where si := [gi, gi] is the semisimple derived

ideal of gi and zi is the centre of gi. The following lemma will prove useful.

Lemma 5. Let gi, i = 1, . . . , r, be a family of reductive Lie algebras sharing the same

underlying vector space W and let [−,−]i denote the Lie bracket of gi. Suppose that they

satisfy equations (2.39a) and (2.39b) and in addition that one of these Lie algebras, g1 say,

is simple. Then for all x, y ∈W ,

[x, y]i = κi[x, y]1, (2.40)

where κi ∈ R.

Proof. Equation (2.39a) says that for all x ∈ W , adi x := [x,−]i is a derivation of gj, for

all i, j. In particular, ad1 x is a derivation of gi. Since derivations preserve the centre,

ad1 x : zi → zi, whence the subspace zi is an ideal of g1. Since by hypothesis, g1 is simple,

we must have that either zi = W , in which case gi is abelian and the lemma holds with

κi = 0, or else zi = 0, in which case gi is semisimple. It remains therefore to study this case.

Equation (2.39a) again says that adi x is a derivation of g1. Since all derivations of g1

are inner, this means that there is some element y such that adi x = ad1 y. This element is

moreover unique because ad1 has trivial kernel. In other words, this defines a linear map

ψi : gi → g1 by adi x = ad1 ψix ∀x ∈W. (2.41)

This linear map is a vector space isomorphism since kerψi ⊂ ker adi = 0, for gi semisimple.

Now suppose that I ⊳ gi is an ideal, whence adi(x)I ⊂ I for all x ∈ gi. This means that

ad1(y)I ⊂ I for all y ∈ g1, whence I is also an ideal of g1. Since g1 is simple, this means

that I = 0 or else I = W ; in other words, gi is simple.

Now for all x, y, z ∈W , we have

[ψi[x, y]i, z]1 = [[x, y]i, z]i by equation (2.41)

= [x, [y, z]i]i − [y, [x, z]i]i by the Jacobi identity of gi

= [ψix, [ψiy, z]1]1 − [ψiy, [ψix, z]1]1 by equation (2.41)

= [[ψix, ψiy]1, z]1 by the Jacobi identity of g1
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and since g1 has trivial centre, we conclude that

ψi[x, y]i = [ψix, ψiy]1,

whence ψi : gi → g1 is a Lie algebra isomorphism.

Next, condition (2.39b) says that ad1[x, y]i = adi[x, y]1, whence using equation (2.41),

we find that ad1[x, y]i = ad1 ψi[x, y]1, and since ad1 has trivial kernel, [x, y]i = ψi[x, y]1.

We may rewrite this equation as adi x = ψi ad1 x for all x, which again by virtue of (2.41),

becomes ad1 ψix = ψi ad1 x, whence ψi commutes with the adjoint representation of g1.

Since g1 is simple, Schur’s lemma says that ψi must be a multiple, κi say, of the identity.

In other words, adi x = κi ad1 x, which proves the lemma.

Let us now consider the general case when none of the gi are simple. Let us focus on

two reductive Lie algebras, gi = zi ⊕ si, for i = 1, 2 say, sharing the same underlying vector

space W . We will further decompose si into its simple ideals

si =

Ni
⊕

α=1

sα
i . (2.42)

For every x ∈ W , ad1 x is a derivation of g2, whence it preserves the centre z2 and each

simple ideal s
β
2 . This means that z2 and s

β
2 are themselves ideals of g1, whence

z2 = E0 ⊕
⊕

α∈I0

sα
1 and s

β
2 = Eβ ⊕

⊕

α∈Iβ

sα
1 ∀β ∈ {1, 2, . . . , N2} , (2.43)

and where the index sets I0, I1, . . . , IN2 define a partition of {1, . . . , N1}, and

z1 = E0 ⊕ E1 ⊕ · · · ⊕ EN2 (2.44)

is an orthogonal decomposition of z1. But now notice that the restriction of g1 to Eβ ⊕
⊕

α∈Iβ
sα
1 is reductive, whence we may apply lemma 5 to each simple s

β
2 in turn. This allows

us to conclude that for each β, either s
β
2 = Eβ or else s

β
2 = sα

1 , for some α ∈ {1, 2, . . . , N1}
which depends on β, and in this latter case, [x, y]

s
β
2

= κ[x, y]sα
1
, for some nonzero constant κ.

This means that, given any one Lie algebra gi, any other Lie algebra gj in the same fam-

ily is obtained by multiplying its simple factors by some constants (which may be different in

each factor and may also be zero) and maybe promoting part of its centre to be semisimple.

The metric Lie algebras gi induce the following orthogonal decomposition of the under-

lying vector spaceW . We let W0 =
⋂r

i=1 zi be the intersection of all the centres of the reduc-

tive Lie algebras gi. Then we have the following orthogonal direct sumW = W0⊕
⊕N

α=1Wα,

where restricted to each Wα>0 at least one of the Lie algebras, gi say, is simple and hence

all other Lie algebras gj 6=i are such that for all x, y ∈Wα,

[x, y]j = κα
ij [x, y]i ∃κα

ij ∈ R. (2.45)

To simplify the notation, we define a semisimple Lie algebra structure g on the per-

pendicular complement of W0, whose Lie bracket [−,−] is defined in such a way that for all
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x, y ∈Wα, [x, y] := [x, y]i, where i ∈ {1, 2, . . . , r} is the smallest such integer for which the

restriction of gi to Wα is simple. (That such an integer i exists follows from the definition

of W0 and of the Wα.) It then follows that the restriction to Wα of every other gj 6=i is a

(possibly zero) multiple of g.

We summarise this discussion in the following lemma, which summarises the solution

of equations (2.39a) and (2.39b).

Lemma 6. Let gi, i = 1, . . . , r, be a family of metric Lie algebras sharing the same

underlying euclidean vector space W and let [−,−]i denote the Lie bracket of gi. Suppose

that they satisfy equations (2.39a) and (2.39b). Then there is an orthogonal decomposition

W = W0 ⊕
N

⊕

α=1

Wα, (2.46)

where

[x, y]i =

{

0 if x, y ∈W0;

κα
i [x, y] if x, y ∈Wα,

(2.47)

for some κα
i ∈ R and where [−,−] are the Lie brackets of a semisimple Lie algebra g with

underlying vector space
⊕N

α=1Wα.

2.2.4 Solving for the Jij

Next we study the equations (2.39c) and (2.39d), which involve only Jij . Equation (2.39c)

says that each Jij is a derivation over the gk for all i, j, k. Since derivations preserve the

centre, every Jij preserves the centre of every gk and hence it preserves their intersection

W0. Since Jij preserves the inner product, it also preserves the perpendicular complement

of W0 in W , which is the underlying vector space of the semisimple Lie algebra g of

the previous lemma. Equation (2.39c) does not constrain the component of Jij acting

on W0 since all the [−,−]k vanish there, but it does constrain the components of Jij

acting on
⊕N

α=1Wα. Fix some α and let x, y ∈ Wα. Then by virtue of equation (2.47),

equation (2.39c) says that

κα
k (Jij [x, y] − [Jijx, y] − [x, Jijy]) = 0. (2.48)

Since, given any α there will be at least some k for which κα
k 6= 0, we see that Jij is

a derivation of g. Since g is semisimple, this derivation is inner, where there exists a

unique zij ∈ g, such that Jijy = [zij , y] for all y ∈ g. Since the simple ideals of g are

submodules under the adjoint representation, Jij preserves each of the simple ideals and

hence it preserves the decomposition (2.46). Let zα
ij denote the component of zij along Wα.

Equation (2.39d) can now be rewritten for x, y ∈Wα as

κα
i [zα

jℓ, [x, y]] + κα
j [zα

ℓi, [x, y]] + κα
ℓ [zα

ij , [x, y]] = 0. (2.49)

Since g has trivial centre, this is equivalent to

κα
i z

α
jℓ + κα

j z
α
ℓi + κα

ℓ z
α
ij = 0, (2.50)
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which can be written more suggestively as κα∧zα = 0, where κα ∈ R
r and zα ∈ Λ2

R
r⊗Wα.

This equation has as unique solution zα = κα ∧ sα, for some sα ∈ R
r ⊗Wα, or in indices

zα
ij = κα

i s
α
j − κα

j s
α
i ∃sα

i ∈Wα. (2.51)

Let si =
∑

α s
α
i ∈ g and consider now the isometry ϕ : V → V defined by

ϕ(vi) = vi

ϕ(z) = z

ϕ(ui) = ui − si −
1

2

∑

j

〈si, sj〉 vj

ϕ(x) = x+
∑

i

〈si, x〉 vi,

(2.52)

for all z ∈ W0 and all x ∈
⊕N

α=1Wα. The effect of such a transformation on the 3-

brackets (2.38) is an uninteresting modification of Kijk and Lijkℓ and the more interesting

disappearance of Jij from the 3-brackets involving elements in Wα. Indeed, for all x ∈Wα,

we have

[ϕ(ui), ϕ(uj), ϕ(x)] = [ui − si, uj − sj , x]

= [ui, uj , x] + [uj , si, x] − [ui, sj , x] + [si, sj, x]

= Jijx+ [si, x]j − [sj , x]i + central terms

= [zα
ij , x] + κα

j [sα
i , x] − κα

i [sα
j , x] + central terms

= [zα
ij + κα

j s
α
i − κα

i s
α
j , x] + central terms

= 0 + central terms,

where we have used equation (2.51).

This means that without loss of generality we may assume that Jijx = 0 for all x ∈Wα

for any α. Now consider equation (2.39f) for x ∈
⊕N

α=1Wα. The right-hand side vanishes,

whence [Kijk, x]ℓ = 0. Also if x ∈W0, then [Kijk, x]ℓ = 0 because x is central with respect

to all gℓ. Therefore we see that Kijk is central with respect to all gℓ, and hence Kijk ∈W0.

In other words, we have proved the following

Lemma 7. In the notation of lemma 6, the nonzero 3-brackets for V may be brought to

the form

[ui, uj , uk] = Kijk +

r
∑

ℓ=1

Lijkℓvℓ

[ui, uj , x0] = Jijx0 −
r

∑

k=1

〈Kijk, x0〉 vk

[ui, x0, y0] = −
r

∑

j=1

〈x0, Jijy0〉 vj

[ui, xα, yα] = κα
i [x, y]

[xα, yα, zα] = −〈[xα, yα], zα〉
r

∑

i=1

κα
i vi,

(2.53)
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for all xα, yα, zα ∈Wα, x0, y0 ∈W0 and for some Lijkℓ ∈ R, Kijk ∈W0 and Jij ∈ so(W0),

all of which are totally skewsymmetric in their indices.

Since their left-hand sides vanish, equations (2.39e) and (2.39f) become conditions on

Jij ∈ so(W0):

JijJkℓ − JkℓJij = 0, (2.54)

JjkJiℓ + JkℓJij + JjℓJki = 0. (2.55)

The first condition says that the Jij commute, whence since the inner product on W0 is

positive-definite, they must belong to the same Cartan subalgebra h ⊂ so(W0). Let Hπ,

for π = 1, . . . , ⌊dim W0
2 ⌋, denote a basis for h, with each Hπ corresponding to the generator

of infinitesimal rotations in mutually orthogonal 2-planes in W0. In particular, this means

that HπH̺ = 0 for π 6= ̺ and that H2
π = −Ππ, with Ππ the orthogonal projector onto the

2-plane labelled by π. We write Jπ
ij ∈ R for the component of Jij along Hπ. Fixing π we

may think of Jπ
ij as the components of Jπ ∈ Λ2

R
r. Using the relations obeyed by the Hπ,

equation (2.55) separates into ⌊dim W0
2 ⌋ equations, one for each value of π, which in terms

of Jπ can be written simply as Jπ ∧Jπ = 0. This is a special case of a Plücker relation and

says that Jπ is decomposable; that is, Jπ = ηπ ∧ ζπ for some ηπ, ζπ ∈ R
r. In other words,

the solution of equations (2.54) and (2.55) is

Jij =
∑

π

(

ηπ
i ζ

π
j − ηπ

j ζ
π
i

)

Hπ (2.56)

living in a Cartan subalgebra h ⊂ so(W0).

2.2.5 Solving for the Kijk

It remains to solve equations (2.39g) and (2.39h) for Kijk. We shall concentrate on the

linear equation (2.39g). This is a linear equation on K ∈ Λ3
R

r ⊗W0 and says that it is in

the kernel of a linear map

Λ3
R

r ⊗W0 −→ Λ2
R

r ⊗ Λ3
R

r ⊗W0 (2.57)

defined by

Kijk 7→ JijKkℓm − JℓmKijk − JmkKijℓ − JkℓKijm. (2.58)

The expression in the right-hand side is manifestly skewsymmetric in ij and kℓm sepa-

rately, whence it belongs to Λ2
R

r ⊗Λ3
R

r ⊗W0 as stated above. For generic r (here r ≥ 5)

we may decompose

Λ2
R

r ⊗ Λ3
R

r = Y R
r ⊕ Y R

r ⊕ Λ5
R

r, (2.59)

where Y Young tableau denotes the corresponding Young symmetriser representation. Then

one can see that the right-hand side of (2.58) has no component in the first of the above sum-

mands and hence lives in the remaining two summands, which are isomorphic to R
r⊗Λ4

R
r.
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We now observe that via an isometry of V of the form

ϕ(vi) = vi

ϕ(xα) = xα

ϕ(ui) = ui + ti −
1

2

∑

j

〈ti, tj〉 vj

ϕ(x0) = x0 −
∑

i

〈x0, ti〉 vi,

(2.60)

for ti ∈ W0, the form of the 3-brackets (2.53) remains invariant, but with Kijk and Lijkℓ

transforming by

Kijk 7→ Kijk + Jijtk + Jjkti + Jkitj , (2.61)

and

Lijkℓ 7→Lijkℓ + 〈Kijk, tℓ〉 − 〈Kℓij , tk〉 + 〈Kkℓi, tj〉 − 〈Kjkℓ, ti〉
+ 〈Jijtk, tℓ〉 + 〈Jkitj, tℓ〉 + 〈Jjkti, tℓ〉 + 〈Jiℓtj, tk〉 + 〈Jjℓtk, ti〉 + 〈Jkℓti, tj〉 ,

(2.62)

respectively. In particular, this means that there is an ambiguity in Kijk, which can be

thought of as shifting it by the image of the linear map

R
r ⊗W0 −→ Λ3

R
r ⊗W0 (2.63)

defined by

ti 7→ Jijtk + Jjkti + Jkitj . (2.64)

The two maps (2.57) and (2.63) fit together in a complex

R
r ⊗W0 −→ Λ3

R
r ⊗W0 −→ R

r ⊗ Λ4
R

r ⊗W0, (2.65)

where the composition vanishes precisely by virtue of equations (2.54) and (2.55). We

will show that this complex is acyclic away from the kernel of J , which will mean that

without loss of generality we can take Kijk in the kernel of J subject to the final quadratic

equation (2.39h).

Let us decompose W0 into an orthogonal direct sum

W0 =



























(dim W0)/2
⊕

π=1
Eπ, if dimW0 is even, and

Rw ⊕
(dim W0−1)/2

⊕

π=1
Eπ, if dimW0 is odd,

(2.66)

where Eπ are mutually orthogonal 2-planes and, in the second case, w is a vector perpendic-

ular to all of them. On Eπ the Cartan generator Hπ acts as a complex structure, and hence

we may identify each Eπ with a complex one-dimensional vector space and Hπ with multi-

plication by i. This decomposition of Wπ allows us to decompose Kijk = Kw
ijk +

∑

π K
π
ijk,
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where the first term is there only in the odd-dimensional situation and the Kπ
ijk are com-

plex numbers. The complex (2.65) breaks up into ⌊dimW0
2 ⌋ complexes, one for each value

of π. If Jπ = 0 then Kπ
ijk is not constrained there, but if Jπ = ηπ ∧ ζπ 6= 0 the complex

turns out to have no homology, as we now show.

Without loss of generality we may choose the vectors ηπ and ζπ to be the elementary

vectors e1 and e2 in R
r, so that Jπ has a Jπ

12 = 1 and all other Jπ
ij = 0. Take i = 1 and

j = 2 in the cocycle condition (2.57), to obtain

Kπ
kℓm = Jπ

ℓmK
π
12k + Jπ

mkK
π
12ℓ + Jπ

kℓK
π
12m. (2.67)

It follows that if any two of k, ℓ,m > 2, then Kπ
kℓm = 0. In particular Kπ

1ij = Kπ
2ij = 0 for

all i, j > 2, whence only Kπ
12k for k > 2 can be nonzero. However for k > 2, Kπ

12k = Jπ
12ek,

with ek the kth elementary vector in R
r, and hence Kπ

12k is in the image of the map (2.63);

that is, a coboundary. This shows that we may assume without loss of generality that

Kπ
ijk = 0. In summary, the only components of Kijk which survive are those in the kernel

of all the Jij . It is therefore convenient to split W0 into an orthogonal direct sum

W0 = E0 ⊕
⊕

π

Eπ, (2.68)

where on each 2-plane Eπ, Jπ = ηπ ∧ ζπ 6= 0, whereas Jijx = 0 for all x ∈ E0. Then we

can take Kijk ∈ E0.

Finally it remains to study the quadratic equation (2.39h). First of all we mention

that this equation is automatically satisfied for r ≤ 4. To see this notice that the equation

is skewsymmetric in k, ℓ,m, n, whence if r < 4 it is automatically zero. When r = 4, we

have to take k, ℓ,m, n all different and hence the equation becomes

〈Kij1,K234〉 − 〈Kij2,K341〉 + 〈Kij3,K412〉 − 〈Kij4,K123〉 = 0,

which is skewsymmetric in i, j. There are six possible choices for i, j but by symmetry any

choice is equal to any other up to relabeling, so without loss of generality let us take i = 1

and j = 2, whence the first two terms are identically zero and the two remaining terms sat-

isfy

〈K123,K412〉 − 〈K124,K123〉 = 0,

which is identically true. This means that the cases of index 3 and 4 are classifiable using

our results. By contrast, the case of index 5 and above seems not to be tame. An example

should suffice. So let us take the case of r = 5 and dimE0 = 1, so that the Kijk can be

taken to be real numbers. The solutions to (2.39h) now describe the intersection of five

quadrics in R
10:

K125K134 −K124K135 +K123K145 = 0

K125K234 −K124K235 +K123K245 = 0

K135K234 −K134K235 +K123K345 = 0

K145K234 −K134K245 +K124K345 = 0

K145K235 −K135K245 +K125K345 = 0,
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whence the solutions define an algebraic variety. One possible branch is given by setting

K1ij = 0 for all i, j, which leaves undetermined K234, K235, K245 and K345. There are

other branches which are linearly related to this one: for instance, setting K2ij = 0, et

cetera, but there are also other branches which are not linearly related to it.

2.2.6 Summary and conclusions

Let us summarise the above results in terms of the following structure theorem.

Theorem 2. Let V be a finite-dimensional indecomposable metric 3-Lie algebra of index

r > 0 with a maximally isotropic centre. Then V admits a vector space decomposition into

r +M +N + 1 orthogonal subspaces

V =
r

⊕

i=1

(Rui ⊕ Rvi) ⊕
N

⊕

α=1

Wα ⊕
M

⊕

π=1

Eπ ⊕ E0, (2.69)

where Wα, Eπ and E0 are positive-definite subspaces with the Eπ being two-dimensional,

and where 〈ui, uj〉 = 〈vi, vj〉 = 0 and 〈ui, vj〉 = δij . The 3-Lie algebra is defined in terms

of the following data:

• 0 6= ηπ ∧ ζπ ∈ Λ2
R

r for each π = 1, . . . ,M ,

• 0 6= κα ∈ R
r for each α = 1, . . . , N ,

• a metric simple Lie algebra structure gα on each Wα,

• L ∈ Λ4
R

r, and

• K ∈ Λ3Rr ⊗ E0 subject to the equation

〈Kijn,Kkℓm〉 + 〈Kijℓ,Kmnk〉 − 〈Kijm,Knkℓ〉 − 〈Kijk,Kℓmn〉 = 0,

by the following 3-brackets,1

[ui, uj , uk] = Kijk +

r
∑

ℓ=1

Lijkℓvℓ

[ui, uj, x0] = −
r

∑

k=1

〈Kijk, x0〉 vk

[ui, uj , xπ] = Jπ
ijHπxπ

[ui, xπ, yπ] = −
r

∑

j=1

〈

xπ, J
π
ijHπyπ

〉

vj

[ui, xα, yα] = κα
i [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉
r

∑

i=1

κα
i vi,

(2.70)

1We understand tacitly that if a 3-bracket is not listed here it vanishes. Also every summation is written

explicitly, so the summation convention is not in force. In particular, there is no sum over π in the third

and fourth brackets.
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for all x0 ∈ E0, xπ, yπ ∈ Eπ and xα, yα, zα ∈ Wα, and where Jπ
ij = ηπ

i ζ
π
j − ηπ

j ζ
π
i and Hπ a

complex structure on each 2-plane Eπ. The resulting 3-Lie algebra is indecomposable pro-

vided that there is no x0 ∈ E0 which is perpendicular to all the Kijk, whence in particular

dimE0 ≤
(r
3

)

.

2.3 Examples for low index

Let us now show how to recover the known classifications in index ≤ 2 from theorem 2.

Let us consider the case of minimal positive index r = 1. In that case, the indices

i, j, k, l in theorem 2 can only take the value 1 and therefore Jij , Kijk and Lijkl are not

present. Indecomposability of V forces E0 = 0 and Eπ = 0, whence letting u = u1 and

v = v1, we have V = Ru ⊕ Rv ⊕
⊕N

α=1Wα as a vector space, with 〈u, u〉 = 〈v, v〉 = 0,

〈u, v〉 = 1 and
⊕N

α=1Wα euclidean. The 3-brackets are:

[u, xα, yα] = [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉 v,
(2.71)

for all xα, yα, zα ∈Wα and where we have redefined κα[xα, yα] → [xα, yα], which is a simple

Lie algebra on each Wα. This agrees with the classification of lorentzian 3-Lie algebras in [9]

which was reviewed in the introduction.

Let us now consider r = 2. According to theorem 2, those with a maximally isotropic

centre may now have a nonvanishing J12 while Kijk and Lijkl are still absent. Inde-

composability of V forces E0 = 0. Therefore W0 =
⊕M

π=1Eπ and, as a vector space,

V = Ru1 ⊕ Rv1 ⊕ Ru2 ⊕ Rv2 ⊕W0 ⊕
⊕N

α=1Wα with 〈ui, uj〉 = 〈vi, vj〉 = 0, 〈ui, vj〉 = δij ,

∀i, j = 1, 2 and W0 ⊕
⊕N

α=1Wα is euclidean. The 3-brackets are now:

[u1, u2, xπ] = Jxπ

[u1, xπ, yπ] = −〈xπ, Jyπ〉 v2
[u2, xπ, yπ] = 〈xπ, Jyπ〉 v1
[u1, xα, yα] = κα

1 [xα, yα]

[u2, xα, yα] = κα
2 [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉κα
1 v1 − 〈[xα, yα], zα〉κα

2 v2,

(2.72)

for all xπ, yπ ∈ Eπ and xα, yα, zα ∈Wα. This agrees with the classification in [13] of finite-

dimensional indecomposable 3-Lie algebras of index 2 whose centre contains a maximally

isotropic plane. In that paper such algebras were denoted VIIIb(E, J, l, h, g, ψ) with under-

lying vector space R(u, v) ⊕ R(e+,e−) ⊕E ⊕ l ⊕ h⊕ g with 〈u, u〉 = 〈v, v〉 = 〈e±,e±〉 = 0,

〈u, v〉 = 1 = 〈e+,e−〉 and all ⊕ orthogonal. The nonzero Lie 3-brackets are given by

[u,e−, x] = Jx

[u, x, y] = 〈Jx, y〉 e+

[e−, x, y] = −〈Jx, y〉 v
[e−, h1, h2] = [h1, h2]h

[h1, h2, h3] = −〈[h1, h2]h, h3〉 e+

[u, g1, g2] = [ψg1, g2]g

[e−, g1, g2] = [g1, g2]g

[g1, g2, g3] = −〈[g1, g2]g, g3〉 e+ − 〈[ψg1, g2]g, g3〉 v
[u, ℓ1, ℓ2] = [ℓ1, ℓ2]l

[ℓ1, ℓ2, ℓ3] = −〈[ℓ1, ℓ2]l, ℓ3〉 v,
(2.73)
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where x, y ∈ E, h, hi ∈ h, gi ∈ g and ℓi ∈ l.

To see that this family of 3-algebras is of the type (2.72) it is enough to identify

u1 ↔ u v1 ↔ v u2 ↔ e− v2 ↔ e+ (2.74)

as well as

W0 ↔ E and

N
⊕

α=1

Wα ↔ l ⊕ h ⊕ g, (2.75)

where the last identification is not only as vector spaces but also as Lie algebras, and set

κ1|h = 0

κ1|l = 1

κ1|gα = ψα

κ2|h = 1

κ2|l = 0

κ2|gα = 1,

(2.76)

to obtain the map between the two families. As shown in [13] there are 9 different

types of such 3-Lie algebras, depending on which of the four ingredients (E, J), l, h or

(g, ψ) are present.

The next case is that of index r = 3, where there are up to 3 nonvanishing Jij and one

K123 := K, while Lijkl is still not present. Indecomposability of V forces dimE0 ≤ 1. As

a vector space, V splits up as

V =
3

⊕

i=1

(Rui ⊕ Rvi) ⊕
N

⊕

α=1

Wα ⊕
M

⊕

π=1

Eπ ⊕ E0, (2.77)

where all ⊕ are orthogonal except the second one, Wα, E0 and Eπ are positive-definite

subspaces with dimE0 ≤ 1, Eπ being two-dimensional, and where 〈ui, uj〉 = 〈vi, vj〉 = 0

and 〈ui, vj〉 = δij . The 3-brackets are given by

[u1, u2, u3] = K

[ui, uj, x0] = −
r

∑

k=1

〈Kijk, x0〉 vk

[ui, uj , xπ] = Jπ
ijHπxπ

[ui, xπ, yπ] = −
r

∑

j=1

〈

xπ, J
π
ijHπyπ

〉

vj

[ui, xα, yα] = κα
i [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉
r

∑

i=1

κα
i vi,

(2.78)

for all x0 ∈ E0, xπ, yπ ∈ Eπ and xα, yα, zα ∈ Wα, and where Jπ
ij = ηπ

i ζ
π
j − ηπ

j ζ
π
i and Hπ a

complex structure on each 2-plane Eπ.

Finally, let us remark that the family of admissible 3-Lie algebras found in [18] are

included in theorem 2. In that paper, a family of solutions to equations (2.31) was found

by setting each of the Lie algebra structures [−,−]i to be nonzero in orthogonal subspaces
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of W . This corresponds, in the language of this paper, to the particular case of allowing

precisely one κα
i to be nonvanishing in each Wα.

Notice that, as shown in (2.76), already in [13] there are examples of admissible 3-Lie

algebras of index 2 which are not of this form as both κ1 and κ2 might be nonvanishing in

the gα factors.

To solve the rest of the equations, two ansätze are proposed in [18]:

• the trivial solution with nonvanishing J , i.e. κα
i = 0, Kijk = 0 for all i, j, k = 1, . . . , r

and for all α; and

• precisely one κα
i = 1 for each α (and include those Wα’s where all κ’s are zero in W0)

and one Jij := J 6= 0 assumed to be an outer derivation of the reference Lie algebra

defined on W .

As pointed out in that paper, Lijkl is not constrained by the fundamental identity, so

it can in principle take any value, whereas the ansatz provided for Kijk is given in terms

of solutions of an equation equivalent to (2.39h). In the lagrangians considered, both Lijkl

and Kijk are set to zero.

One thing to notice is that in all these theories there is certain redundancy concerning

the index of the 3-Lie algebra. If the indices in the nonvanishing structures κα
i , Jij , Kijk

and Lijkl involve only numbers from 1 to r0, then any 3-Lie algebra with such nonvanishing

structures and index r ≥ r0 gives rise to the equivalent theories.

In this light, in the first ansatz considered, one can always define the non vanishing

J to be J12 and then the corresponding theory will be equivalent to one associated to the

index-2 3-Lie algebras considered in [13].

In the second case, the fact that J is an outer derivation implies that it must live

on the abelian part of W as a Lie algebra, since the semisimple part does not possess

outer derivations. This coincides with what was shown above, i.e., that J |Wα = 0 for

each α. Notice that each Lie algebra [−,−]i identically vanishes in W0, therefore the

structure constants of the 3-Lie algebra do not mix J and [−,−]i. The theories in [18]

corresponding to this ansatz also have Kijk = 0, whence again they are equivalent to the

theory corresponding to the index-2 3-Lie algebra which was denoted V (E, J, h) in [13].

3 Bagger-Lambert lagrangians

In this section we will consider the physical properties of the Bagger-Lambert theory based

on the most general kind of admissible metric 3-Lie algebra, as described in theorem 2.

In particular we will investigate the structure of the expansion of the corresponding

Bagger-Lambert lagrangians around a vacuum wherein the scalars in half of the null di-

rections of the 3-Lie algebra take the constant values implied by the equations of motion

for the scalars in the remaining null directions, spanning the maximally isotropic centre.

This technique was also used in [18] and is somewhat reminiscent of the novel Higgs mech-

anism that was first introduced by Mukhi and Papageorgakis [14] in the context of the

Bagger-Lambert theory based on the unique simple euclidean 3-Lie algebra S4. Recall that
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precisely this strategy has already been employed in lorentzian signature in [12], for the

class of Bagger-Lambert theories found in [10–12] based on the unique admissible lorentzian

metric 3-Lie algebra W (g), where it was first appreciated that this theory is perturbatively

equivalent to N = 8 super Yang-Mills theory on R
1,2 with the euclidean semisimple gauge

algebra g. That is, there are no higher order corrections to the super Yang-Mills lagrangian

here, in contrast with the infinite set of corrections (suppressed by inverse powers of the

gauge coupling) found for the super Yang-Mills theory with su(2) gauge algebra arising

from higgsing the Bagger-Lambert theory based on S4 in [14]. This perturbative equiva-

lence between the Bagger-Lambert theory based on W (g) and maximally supersymmetric

Yang-Mills theory with euclidean gauge algebra g has since been shown more rigorously

in [15–17].

We will show that there exists a similar relation with N = 8 super Yang-Mills theory

after expanding around the aforementioned maximally supersymmetric vacuum the Bagger-

Lambert theories based on the more general physically admissible metric 3-Lie algebras we

have considered. However, the gauge symmetry in the super Yang-Mills theory is generally

based on a particular indefinite signature metric Lie algebra here that will be identified in

terms of the data appearing in theorem 2. The physical properties of the these Bagger-

Lambert theories will be shown to describe particular combinations of decoupled super

Yang-Mills multiplets with euclidean gauge algebras and free maximally supersymmetric

massive vector multiplets. We will identify precisely how the physical moduli relate to

the algebraic data in theorem 2. We will also note how the theories resulting from those

finite-dimensional indefinite signature 3-Lie algebras considered in [18] are recovered.

3.1 Review of two gauge theories in indefinite signature

Before utilising the structural results of the previous section, let us briefly review some

general properties of the maximal N = 8 supersymmetric Bagger-Lambert and Yang-Mills

theories in three-dimensional Minkowski space that will be of interest to us, when the fields

are valued in a vector space V equipped with a metric of indefinite signature. We shall

denote this inner product by 〈−,−〉 and take it to have general indefinite signature (r, r+n).

We can then define a null basis eA = (ui, vi, ea) for V , with i = 1, . . . , r, a = 1, . . . , n, such

that 〈ui, vj〉 = δij , 〈ui, uj〉 = 0 = 〈vi, vj〉 and 〈ea, eb〉 = δab.

For the sake of clarity in the forthcoming analysis, we will ignore the fermions in these

theories. Needless to say that they both have a canonical maximally supersymmetric com-

pletion and none of the manipulations we will perform break any of the supersymmetries

of the theories.

3.1.1 Bagger-Lambert theory

Let us begin by reviewing some details of the bosonic field content of the Bagger-Lambert

theory based on the 3-bracket [−,−,−] defining a metric 3-Lie algebra structure on V .

The components of the canonical 4-form for the metric 3-Lie algebra are FABCD :=

〈[eA, eB , eC ], eD〉 (indices will be lowered and raised using the metric 〈eA, eB〉 and its

inverse). The bosonic fields in the Bagger-Lambert theory have components XA
I and

(Ãµ)AB = FA
BCDA

CD
µ , corresponding respectively to the scalars (I = 1, . . . , 8 in the
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vector of the so(8) R-symmetry) and the gauge field (µ = 0, 1, 2 on R
1,2 Minkowski space).

Although the supersymmetry transformations and equations of motion can be expressed

in terms of (Ãµ)AB , the lagrangian requires it to be expressed as above in terms of AAB
µ .

The bosonic part of the Bagger-Lambert lagrangian is given by

L = −1

2
〈DµXI ,D

µXI〉 + V (X) + LCS , (3.1)

where the scalar potential is

V (X) = − 1
12 〈[XI ,XJ ,XK ], [XI ,XJ ,XK ]〉 , (3.2)

the Chern-Simons term is

LCS =
1

2

(

AAB ∧ dÃAB + 2
3A

AB ∧ ÃAC ∧ ÃC
B

)

, (3.3)

andDµφ
A = ∂µφ

A+(Ãµ)ABφ
B defines the action on any field φ valued in V of the derivative

D that is gauge-covariant with respect to ÃA
B . The infinitesimal gauge transformations

take the form δφA = −Λ̃A
Bφ

B and δ(Ãµ)AB = ∂µΛ̃A
B +(Ãµ)ACΛ̃C

B − Λ̃A
C(Ãµ)CB , where

Λ̃A
B = FA

BCDΛCD in terms of an arbitrary skewsymmetric parameter ΛAB = −ΛBA.

If we now assume that the indefinite signature metric 3-Lie algebra above admits a max-

imally isotropic centre which we can take to be spanned by the basis elements vi then the

4-form components FviABC must all vanish identically. There are two important physical

consequences of this assumption. The first is that the covariant derivative DµX
ui

I = ∂µX
ui

I .

The second is that the tensors FABCD and FABC
GFDEFG = FABC

gFDEFg which govern

all the interactions in the Bagger-Lambert lagrangian contain no legs in the vi directions.

Therefore the components AviA
µ of the gauge field do not appear at all in the lagrangian

while Xvi

I appear only in the free kinetic term −DµX
ui

I ∂
µXvi

I = −∂µX
ui

I ∂
µXvi

I . Thus Xvi

I

can be integrated out imposing that each Xui

I be a harmonic function on R
1,2 which must

be a constant if the solution is to be nonsingular. (We will assume this to be the case

henceforth but singular monopole-type solutions may also be worthy of investigation, as

in [21].) It is perhaps just worth noting that, in addition to setting Xui

I constant, one must

also set the fermions in all the ui directions to zero which is necessary and sufficient for

the preservation of maximal supersymmetry here.

The upshot is that we now have −1
2 〈DµXI ,D

µXI〉 = −1
2DµX

a
ID

µXa
I (with contrac-

tion over only the euclidean directions of V ) and each Xui

I is taken to be constant in (3.1).

Since both Xvi

I and AviA
µ are now absent, it will be more economical to define Xi

I := Xui

I

and Aia
µ := Auia

µ henceforth.

3.1.2 Super Yang-Mills theory

Let us now perform an analogous review for N = 8 super Yang-Mills theory, with gauge

symmetry based on the Lie bracket [−,−] defining a metric Lie algebra structure g on V .

The components of the canonical 3-form on g are fABC := 〈[eA, eB ], eC〉. The bosonic fields

in the theory consist of a gauge field AA
µ and seven scalar fields XA

I (where now I = 1, . . . , 7

in the vector of the so(7) R-symmetry) with all fields taking values in V . The field strength
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for the gauge field takes the canonical form Fµν = [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ] in

terms of the gauge-covariant derivative Dµ = ∂µ+[Aµ,−]. This theory is not scale-invariant

and has a dimensionful coupling constant κ.

The bosonic part of the super Yang-Mills lagrangian is given by

L
SYM(AA,XA

I , κ|g)=−1

2
〈DµXI ,D

µXI〉−
κ2

4
〈[XI ,XJ ], [XI ,XJ ]〉− 1

4κ2
〈Fµν , F

µν〉 . (3.4)

Noting explicitly the dependence on the data on the left hand side will be useful when we

come to consider super Yang-Mills theories with a much more elaborate gauge structure.

Assuming now that g admits a maximally isotropic centre, again spanned by the basis

elements vi, then the 3-form components fviAB must all vanish identically. This property

implies DXui

I = dXui

I , F ui = dAui and that the tensors fABC and fAB
EfCDE = fAB

efCDe

which govern all the interactions contain no legs in the vi directions. Therefore Xvi

I and Avi

only appear linearly in their respective free kinetic terms, allowing them to be integrated

out imposing that Xui

I is constant and Aui is exact. Setting the fermions in all the ui

directions to zero again ensures the preservation of maximal supersymmetry.

The resulting structure is that all the inner products using 〈eA, eB〉 in (3.4) are to

be replaced with 〈ea, eb〉 while all Xui

I are to be taken constant and Aui = dφui , for some

functions φui . With bothXvi

I and Avi now absent, it will be convenient to define Xi
I := Xui

I

and φi := φui henceforth.

Let us close this review by looking in a bit more detail at the physical properties of

a particular example of a super Yang-Mills theory in indefinite signature with maximally

isotropic centre, whose relevance will become clear in the forthcoming sections. Four-

dimensional Yang-Mills theories based on such gauge groups were studied in [22]. The gauge

structure of interest is based on the lorentzian metric Lie algebra defined by the double

extension d(E,R) of an even-dimensional vector space E with euclidean inner product.

Writing V = Ru ⊕ Rv ⊕ E as a lorentzian vector space, the nonvanishing Lie brackets of

d(E,R) are given by

[u, x] = Jx , [x, y] = −〈x, Jy〉 v , (3.5)

for all x, y ∈ E where the skewsymmetric endomorphism J ∈ so(E) is part of the data

defining the double extension. The canonical 3-form for d(E,R) therefore has only the

components fuab = Jab with respect to the euclidean basis ea on E. It will be convenient

to take J to be nondegenerate and so the eigenvalues of J2 will be negative-definite.

We shall define the positive number µ2 := Xu
I X

u
I as the SO(7)-norm-squared of the con-

stant 7-vector Xu
I and the projection operator P u

IJ := δIJ −µ−2Xu
I X

u
J onto the hyperplane

R
6 ⊂ R

7 orthogonal to Xu
I . It will also be convenient to define xa := Xu

I X
a
I as the projec-

tion of the seventh super Yang-Mills scalar field along Xu
I and DΦ := dΦ−dφu ∧JΦ where

Φ can be any p-form on R
1,2 taking values in E. In terms of this data, the super Yang-Mills

lagrangian L SYM((dφu, Aa), (Xu
I ,X

a
I ), κ|d(E,R)) can be more succinctly expressed as

− 1

2
P u

IJDµX
a
I DµXa

J +
κ2µ2

2
(J2)abP

u
IJX

a
IX

b
J − 1

4κ2
(2D[µA

a
ν])(2D[µAν] a)

− 1

2µ2

(

Dµx
a + µ2JabAb

µ

)

(

Dµxa + µ2JacAµ c
)

. (3.6)
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From the first line we see that the six scalar fields P u
IJX

a
J are massive with mass-squared

given by the eigenvalues of the matrix −κ2µ2(J2)ab. All the fields couple to dφu through

the covariant derivative D, but the second line shows that only the seventh scalar xa couples

to the gauge field Aa. However, the gauge symmetry of (3.6) under the transformations

δAa = Dλa and δxa = −µ2Jabλb, for any parameter λa ∈ E, shows that xa is in fact

pure gauge and can be removed in (3.6) by fixing λa = µ−2(J−1)abxb. The remaining

gauge symmetry of (3.6) is generated by the transformations δφu = α and δΦ = αJΦ

for all fields Φ ∈ E, where α is an arbitrary scalar parameter. This is obvious since

D = exp(φuJ)dexp(−φuJ) and therefore, one can take D = d in (3.6) by fixing α = −φu.

Thus, in the gauge defined above, the lagrangian L SYM((dφu, Aa), (Xu
I ,X

a
I ), κ|d(E,R))

becomes simply

− 1

2
P u

IJ∂µX
a
I ∂

µXa
J+
κ2µ2

2
(J2)abP

u
IJX

a
IX

b
J−

1

4κ2
(2∂[µA

a
ν])(2∂

[µAν]a)+
µ2

2
(J2)abA

a
µA

µb, (3.7)

describing dimE decoupled free abelian N = 8 supersymmetric massive vector multiplets,

each of which contains bosonic fields given by the respective gauge field 1
κ A

a
µ plus six scalars

P u
IJX

a
I , all with the same mass-squared equal to the respective eigenvalue of −κ2µ2(J2)ab.

It is worth pointing out that one can also obtain precisely the theory above from a

particular truncation of an N = 8 super Yang-Mills theory with euclidean semisimple Lie

algebra g. If one introduces a projection operator PIJ onto a hyperplane R
6 ⊂ R

7 then

one can rewrite the seven scalar fields in this euclidean theory in terms of the six projected

fields PIJX
a
J living on the hyperplane plus the single scalar ya in the complementary

direction. Unlike in the lorentzian theory above however, this seventh scalar is not pure

gauge. Indeed, if we expand the super Yang-Mills lagrangian (3.4) for this euclidean theory

around a vacuum where ya is constant then this constant appears as a physical modulus

of the effective field theory, namely it gives rise to mass terms for the gauge field Aa and

the six projected scalars PIJX
a
J . If one then truncates the effective field theory to the

Coulomb branch, such that the dynamical fields A and PIJXJ take values in a Cartan

subalgebra t < g (while the constant vacuum expectation value y ∈ g), then the lagrangian

takes precisely the form (3.7) after making the following identifications. First one must take

E = t whereby the gauge field Aa and coupling κ are the the same for both theories. Second

one must identify the six-dimensional hyperplanes occupied by the scalars Xa
I in both

theories such that P u
IJ in (3.7) is identified with PIJ here. Finally, the mass matrix for the

euclidean theory is −κ2[(ady)
2]ab which must be identified with −κ2µ2(J2)ab in (3.7). This

last identification requires some words of explanation. We have defined ady Φ := [y,Φ] for

all Φ ∈ g, where [−,−] denotes the Lie bracket on g. Since we have truncated the dynamical

fields to the Cartan subalgebra t, only the corresponding legs of (ady)
2 contribute to the

mass matrix. However, clearly y must not also be contained in t or else the resulting mass

matrix would vanish identically. Indeed, without loss of generality, one can take y to live

in the orthogonal complement t⊥ ⊂ g since it is only these components which contribute

to the mass matrix. Thus, although (ady)
2 can be nonvanishing on t, ady cannot. Thus

we cannot go further and equate ady with µJ , even though their squares agree on t. To

summarise all this more succinctly, after the aforementioned gauge-fixing of the lorentzian
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theory and truncation of the euclidean theory, we have shown that

L
SYM ((dφu, A|E) , (Xu

I , P
u
IJXJ |E , x|E) , κ|d(E,R)) = L

SYM (A|E , (PIJXJ |E , y|E⊥) , κ|g) ,

(3.8)

where E = t, y ∈ t⊥ ⊂ g is constant and (ady)
2 = µ2J2 on t. Of course, it is not obvious that

one can always solve this last equation for y in terms of a given µ and J nor indeed whether

this restricts ones choice of g. However, it is the particular case of dimE = 2 that will be of

interest to us in the context of the Bagger-Lambert theory in 3.2.2 where we shall describe

a nontrivial solution for any rank-2 semisimple Lie algebra g. Obvious generalisations of

this solution give strong evidence that the equation can in fact always be solved.

3.2 Bagger-Lambert theory for admissible metric 3-Lie algebras

We will now substitute the data appearing in theorem 2 into the bosonic part of the Bagger-

Lambert lagrangian (3.1), that is after having integrated out Xvi

I to set all Xi
I := Xui

I con-

stant.

Since we will be dealing with components of the various tensors appearing in theo-

rem 2, we need to introduce some index notation for components of the euclidean subspace
⊕N

α=1Wα ⊕
⊕M

π=1Eπ ⊕ E0. To this end we partition the basis ea = (eaα , eaπ , ea0) on the

euclidean part of the algebra, where subscripts denote a basis for the respective euclidean

subspaces. For example, aα = 1, . . . ,dimWα whose range can thus be different for each

α. Similarly a0 = 1, . . . ,dimE0, while aπ = 1, 2 for each two-dimensional space Eπ. Since

the decomposition
⊕N

α=1Wα ⊕ ⊕M
π=1Eπ ⊕E0 is orthogonal with respect to the euclidean

metric 〈ea, eb〉 = δab, we can take only the components 〈eaα , ebα
〉 = δaαbα

, 〈eaπ , ebπ
〉 = δaπbπ

and 〈ea0 , eb0〉 = δa0b0 to be nonvanishing. Since these are all just unit metrics on the

various euclidean factors then we will not need to be careful about raising and lowering

repeated indices, which are to be contracted over the index range of a fixed value of α, π

or 0. Summations of the labels α and π will be made explicit.

In terms of this notation, we may write the data from theorem 2 in terms of the

following nonvanishing components of the canonical 4-form FABCD of the algebra

Fuiaαbαcα
= κα

i faαbαcα

Fuiujaπbπ
=

(

ηπ
i ζ

π
j − ηπ

j ζ
π
i

)

ǫaπbπ

Fuiujuka0 = Kijka0

Fuiujukul
= Lijkl ,

(3.9)

where faαbαcα
denotes the canonical 3-form for the simple metric Lie algebra structure gα on

Wα and we have used the fact that the 2x2 matrix Hπ has only components ǫaπbπ
= −ǫbπaπ

,

with ǫ12 = −1, on each 2-plane Eπ.

A final point of notational convenience will be to define Y AB := XA
I X

B
I and the

projection Xξ
I := ξiX

i
I for any ξ ∈ R

r. Combining these definitions allows us to write

certain projections which often appear in the lagrangian like Y ξς := Xξ
IX

ς
I and Y ξa :=

Xξ
IX

a
I for any ξ, ς ∈ R

r. It will sometimes be useful to write Y ξξ ≡ ‖Xξ‖2 ≥ 0 where

‖Xξ‖ denotes the SO(8)-norm of the vector Xξ
I . A similar shorthand will be adopted for

projections of components of the gauge field, so that Aξς
µ := ξiςjA

ij
µ and Aξa

µ := ξiA
ia
µ .
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It will be useful to note that the euclidean components of the covariant derivative

DµX
A
I = ∂µX

A
I + (Ãµ)ABX

B
I from section 3.1.1 can be written

DµX
aα

I = ∂µX
aα

I − κα
i f

aαbαcα

(

2Aibα
µ Xcα

I +Abαcα
µ Xi

I

)

=: DµX
aα

I − 2Baα
µ Xκα

I

DµX
aπ

I = ∂µX
aπ

I + 2 ηπ
i ζ

π
j ǫ

aπbπ

(

Aij
µX

bπ

I −Aibπ
µ Xj

I +Ajbπ
µ Xi

I

)

= ∂µX
aπ

I + 2 ǫaπbπ

(

Aηπζπ

µ Xbπ

I −Aηπbπ
µ Xζπ

I +Aζπbπ
µ Xηπ

I

)

DµX
a0
I = ∂µX

a0
I −Kijk

a0Aij
µX

k
I .

(3.10)

The second line defines two new quantities on each Wα, namely Baα
µ := 1

2f
aαbαcαAbαcα

µ

and the covariant derivative DµX
aα

I := ∂µX
aα

I − 2 faαbαcακα
i A

ibα
µ Xcα

I . The latter object is

just the canonical covariant derivative with respect to the projected gauge field A aα
µ :=

−2Aκαaα
µ on each Wα. The associated field strength Fµν = [Dµ,Dν ] has components

F
aα = −2κα

i

(

dAiaα − κα
j f

aαbαcαAibα ∧Ajcα

)

. (3.11)

Although somewhat involved, the nomenclature above will help us understand more

clearly the structure of the Bagger-Lambert lagrangian. Let us consider now the contri-

butions to (3.1) coming from the scalar kinetic terms, the sextic potential and the Chern-

Simons term in turn.

The kinetic terms for the scalar fields give

− 1

2
〈DµXI ,D

µXI〉 = −1

2

N
∑

α=1

DµX
aα

I DµXaα

I − 1

2

M
∑

π=1

DµX
aπ

I DµXaπ

I − 1

2
DµX

a0
I DµXa0

I

(3.12)

which expands to

N
∑

α=1

{

−1

2
DµX

aα

I D
µXaα

I + 2Xκα

I Baα
µ D

µXaα

I − 2Y κακα

Baα
µ Bµ aα

}

+

M
∑

π=1

{

−1

2
∂µX

aπ

I ∂µXaπ

I − 2 ∂µXaπ

I ǫaπbπ

(

Aηπζπ

µ Xbπ

I −Aηπbπ
µ Xζπ

I +Aζπbπ
µ Xηπ

I

)

−2
(

Aηπζπ

µ Xaπ

I −Aηπaπ
µ Xζπ

I +Aζπaπ
µ Xηπ

I

)(

Aµ ηπζπ

Xaπ

I −Aµ ηπaπXζπ

I +Aµ ζπaπXηπ

I

)}

− 1

2
∂µX

a0
I ∂µXa0

I +Kijk
a0Aij

µ ∂
µY ka0 − 1

2
Kijka0Klmna0Y

klAij
µA

µ mn . (3.13)
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The scalar potential can be written V (X) = V W (X) + V E(X) + V E0(X) where

V
W (X) = −1

4

N
∑

α=1

faαbαeαf cαdαeα
(

Y κακα

Y aαcα − Y καaαY καcα
)

Y bαdα

V
E(X) = −1

2

M
∑

π=1

{

Y aπaπ

(

Y ηπηπ

Y ζπζπ − (Y ηπζπ

)2
)

+ 2Y ηπaπY ζπaπY ηπζπ

−Y ηπaπY ηπaπY ζπζπ − Y ζπaπY ζπaπY ηπηπ
}

V
E0(X) = − 1

12
Kijka0Klmna0Y

ilY jmY kn .

(3.14)

Notice that V E0(X) is constant and will be ignored henceforth.

And finally, the Chern-Simons term can be written LCS = L W
CS + L E

CS + L
E0
CS where

L
W
CS = −2

N
∑

α=1

Baα ∧ F
aα

L
E
CS = −4

M
∑

π=1

{

ǫaπbπ Aηπaπ ∧Aζπbπ + 2Aηπζπ ∧Aηπaπ ∧Aζπaπ − 1

2
ǫaπbπAaπbπ ∧ dAηπζπ

}

L
E0
CS = 2Kijka0A

ij ∧ dAka0 − 1

3
Kikla0Kjmna0A

ij ∧Akl ∧Amn +
1

2
LijklA

ij ∧ dAkl .

(3.15)

These expressions are valid only up to total derivative terms that will be discarded.

Clearly there is a certain degree of factorisation for the Bagger-Lambert lagrangian into

separate terms living on the different components of
⊕N

α=1Wα ⊕ ⊕M
π=1Eπ ⊕ E0. Indeed

let us define accordingly L W = −1
2

∑N
α=1DµX

aα

I DµXaα

I +V W (X)+L W
CS and likewise for

E and E0. This is mainly for notational convenience however and one must be wary of the

fact that L E and L E0 could have some fields, namely components of Aij, in common.

To relate the full lagrangian L with a super Yang-Mills theory, one has first to identify

and integrate out those fields which are auxiliary or appear linearly as Lagrange multipliers.

This will be most easily done by considering L W , L E and L E0 in turn.

3.2.1 L W

The field Baα appears only algebraically as an auxiliary field in L W . Its equation of

motion implies

2Y κακα

Baα = Xκα

I DXaα

I + ∗F aα , (3.16)

for each value of α. Substituting this back into L W then gives

− 1

2

N
∑

α=1

DµX
aα

I DµXaα

I + L
W
CS =

N
∑

α=1

{

−1

2
P κα

IJ DµX
aα

I D
µXaα

J − 1

4Y κακα F
aα
µν F

µν aα

}

,

(3.17)

where, for each α, P κα

IJ := δIJ − Xκα

I
Xκα

J

Y κακα is the projection operator onto the hyperplane

R
7 ⊂ R

8 which is orthogonal to the 8-vector Xκα

I that κα
i projects the constant Xi

I onto.
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Furthermore, in terms of the Lie bracket [−,−]α on gα, the scalar potential can be

written

V
W (X) = −1

4

N
∑

α=1

Y κακα

P κα

IKP
κα

JL [XI ,XJ ]aα
α [XK ,XL]aα

α . (3.18)

In conclusion, we have shown that upon integrating out Baα one can identify

L
W =

N
∑

α=1

L
SYM

(

A
aα , P κα

IJ X
aα

J , ‖Xκα‖|gα

)

. (3.19)

The identification above with the lagrangian in (3.4) has revealed a rather intricate relation

between the data κα
i and gα on Wα from theorem 2 and the physical parameters in the

super Yang-Mills theory. In particular, the coupling constant for the super Yang-Mills

theory on Wα corresponds to the SO(8)-norm of Xκα

I . Moreover, the direction of Xκα

I

in R
8 determines which hyperplane the seven scalar fields in the super Yang-Mills theory

must occupy and thus may be different on each Wα. The gauge symmetry is based on the

euclidean Lie algebra
⊕N

α=1 gα.

The main point to emphasise is that it is the projections of the individual κα
i onto the

vacuum described by constant Xi
I (rather than the vacuum expectation values themselves)

which determine the physical moduli in the theory. For example, take N = 1 with only

one simple Lie algebra structure g = su(n) on W . The lagrangian (3.19) then describes

precisely the low-energy effective theory for n coincident D2-branes in type IIA string

theory, irrespective of the index r of the initial 3-Lie algebra. The only difference is that

the coupling ‖Xκ‖, to be interpreted as the perimeter of the M-theory circle, is realised as

a different projection for different values of r.

Thus, in general, we are assuming a suitably generic situation wherein none of the

projections Xκα

I vanish identically. If Xκα

I = 0 for a given value of α then the Wα part of

the scalar potential (3.14) vanishes identically and the only occurrence of the correspond-

ing Baα is in the Chern-Simons term (3.15). Thus, for this particular value of α, Baα has

become a Lagrange multiplier imposing F aα = 0 and so A aα is pure gauge. The resulting

lagrangian on this Wα therefore describes a free N = 8 supersymmetric theory for the eight

scalar fields Xaα

I .

3.2.2 L E

The field ǫaπbπAaπbπ appears only linearly in one term in L E
CS and is therefore a Lagrange

multiplier imposing the constraint Aηπζπ
= dφηπζπ

, for some some scalar fields φηπζπ
, for

each value of π. The number of distinct scalars φηπζπ
will depend on the number of linearly

independent 2-planes in R
r which the collection of all ηπ ∧ ζπ span for π = 1, . . . ,M . Let

us henceforth call this number k, which is clearly bounded above by
(r
2

)

.

Moreover, up to total derivatives, one has a choice of taking just one of the two gauge

fields Aηπaπ and Aζπaπ to be auxiliary in L E . These are linearly independent gauge fields

by virtue of the fact that ηπ ∧ ζπ span a 2-plane in R
r for each value of π. Without loss

of generality we can take Aηπaπ to be auxiliary and integrate it out in favour of Aζπaπ .
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After implementing the Lagrange multiplier constraint above, one finds that the equation

of motion of Aηπaπ implies

2Y ζπζπ

Aηπaπ = −ǫaπbπ

{

Xζπ

I

(

dXbπ

I + 2 ǫbπcπ

(

Xcπ

I dφηπζπ

+Xηπ

I Aζπcπ

))

+ 2 ∗
(

dAζπbπ + 2 ǫbπcπdφηπζπ ∧Aζπcπ

)}

. (3.20)

Substituting this back into L E then, following a rather lengthy but straightforward cal-

culation, one finds that

−1

2

M
∑

π=1

DµX
aπ

I DµXaπ

I +L
E
CS = − 1

2

M
∑

π=1

P ζπ

IJ

(

∂µX
aπ

I +2 ǫaπbπ

(

Xbπ

I ∂µφ
ηπζπ

+Xηπ

I Aζπbπ
µ

))

×
(

∂µXaπ

J + 2 ǫaπcπ

(

Xcπ

J ∂µφηπζπ

+Xηπ

J Aµ ζπcπ

))

−
M
∑

π=1

4

Y ζπζπ

(

∂[µA
ζπaπ

ν] + 2 ǫaπbπ∂[µφ
ηπζπ

Aζπbπ

ν]

)

×
(

∂µAν ζπaπ + 2 ǫaπcπ∂µφηπζπ

Aν ζπcπ

)

,

(3.21)

where, for each π, P ζπ

IJ := δIJ − Xζπ

I
Xζπ

J

Y ζπζπ projects onto the hyperplane R
7 ⊂ R

8 orthogonal

to the 8-vector Xζπ

I which ζπ
i projects the constant Xi

I onto.

We have deliberately written (3.21) in a way that is suggestive of a super Yang-Mills

description for the fields on E however, in contrast with the preceding analysis for W ,

the gauge structure here is not quite so manifest. To make it more transparent, let us fix

a particular value of π and consider a 4-dimensional lorentzian vector space of the form

Re+ ⊕ Re− ⊕ Eπ, where the particular basis (e+, e−) for the two null directions obeying

〈e+, e−〉 = 1 and 〈e±, e±〉 = 0 = 〈e±, eaπ 〉 can of course depend on the choice of π (we will

omit the π label here though). If we take Eπ to be a euclidean 2-dimensional abelian Lie

algebra then we can define a lorentzian metric Lie algebra structure on Re+ ⊕ Re− ⊕ Eπ

given by the double extension d(Eπ,R). The nonvanishing Lie brackets of d(Eπ,R) are

[e+, eaπ ] = −ǫaπbπ
ebπ

, [eaπ , ebπ
] = −ǫaπbπ

e− . (3.22)

This double extension is precisely the Nappi-Witten Lie algebra.

For each value of π we can collect the following sets of scalars X
π
I := (Xηπ

I ,Xζπ

I ,Xaπ

I )

and gauge fields A
π := (2 dφηπζπ

, 0,−2Aζπaπ ) into elements of the aforementioned vector

space Re+ ⊕ Re− ⊕ Eπ. The virtue of doing so being that if D = d + [A,−], for each

value of π, is the canonical gauge-covariant derivative with respect to each d(Eπ,R) then

(DXI)
aπ = dXaπ

I + 2 ǫaπbπ

(

Xbπ

I dφηπζπ
+Xηπ

I Aζπbπ

)

while the associated field strength

Fµν = [Dµ,Dν ] has F
aπ = −2

(

dAζπaπ + 2 ǫaπbπdφηπζπ ∧Aζπbπ
)

. These are exactly the

components appearing in (3.21)!

Moreover, the scalar potential V E(X) can be written

V
E(X) = −1

4

M
∑

π=1

Y ζπζπ

P ζπ

IKP
ζπ

JL [XI ,XJ ]aπ [XK ,XL]aπ , (3.23)
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where [−,−] denotes the Lie bracket on each d(Eπ,R) factor.

Thus it might appear that L E is going to describe a super Yang-Mills theory whose

gauge algebra is
⊕M

π=1 d(Eπ,R), which indeed has a maximally isotropic centre and so is

of the form noted in section 3.1.2. However, this need not be the case in general since the

functions φηπζπ
appearing in the e+ direction of each A

π must describe the same degree of

freedom for different values of π precisely when the corresponding 2-planes in R
r spanned

by ηπ ∧ ζπ are linearly dependent. Consequently we must identify the (e+, e−) directions

in all those factors d(Eπ,R) for which the associated ηπ ∧ ζπ span the same 2-plane in

R
r. It is not hard to see that, with respect to a general basis on

⊕M
π=1Eπ, the resulting

Lie algebra k must take the form
⊕k

[π]=1 d(E[π],R) of an orthogonal direct sum over the

number of independent 2-planes k spanned by η[π] ∧ ζ [π] of a set of k double extensions

d(E[π],R) of even-dimensional vector spaces E[π], where
⊕M

π=1Eπ =
⊕k

[π]=1E[π]. That is

each [π] can be thought of as encompassing an equivalence class of π values for which the

corresponding 2-forms ηπ ∧ ζπ are all proportional to each other. The data for k therefore

corresponds to a set of k nondegenerate elements J[π] ∈ so(E[π]) where, for a given value

of [π], the relative eigenvalues of J[π] are precisely the relative proportionality constants

for the linearly dependent 2-forms ηπ ∧ ζπ in the equivalence class. Clearly k therefore has

index k, dimension 2
(

k +
[

dimW0
2

])

and admits a maximally isotropic centre.

Putting all this together, we conclude that

L
E =

k
∑

[π]=1

L
SYM

(

A
[π], P ζ[π]

IJ X
[π]
J , ‖Xζ[π]‖

∣

∣

∣
d(E[π],R)

)

. (3.24)

One can check from (3.14) and (3.21) that the contributions to the Bagger-Lambert la-

grangian on E coming from different Eπ factors, but with π values in the same equivalence

class [π], are precisely accounted for in the expression (3.24) by the definition above of the

elements J[π] defining the double extensions.

The identification above again provides quite an intricate relation between the data on

Eπ from theorem 2 and the physical super Yang-Mills parameters. However, we know from

section 3.1.2 that the physical content of super Yang-Mills theories whose gauge symmetry

is based on a lorentzian Lie algebra corresponding to a double extension is rather more

simple, being described in terms of free massive vector supermultiplets. Let us therefore

apply this preceding analysis to the theory above.

The description above of the lagrangian on each factor Eπ has involved projecting

degrees of freedom onto the hyperplane R
7 ⊂ R

8 orthogonal to Xζπ

I . The natural analogy

here of the six-dimensional subspace occupied by the massive scalar fields in section 3.1.2

is obtained by projecting onto the subspace R
6 ⊂ R

8 which is orthogonal to the plane in R
8

spanned byXηπ∧Xζπ
, i.e. the image in Λ2

R
8 of the 2-form ηπ∧ζπ under the map from R

r →
R

8 provided by the vacuum expectation values Xi
I . This projection operator can be written

P ηπζπ

IJ = δIJ −Xηπ

I Qηπ

J −Xζπ

I Qζπ

J , (3.25)
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where

Qηπ

I :=
1

(∆ηπζπ)2

(

Y ζπζπ

Xηπ

I − Y ηπζπ

Xζπ

I

)

Qζπ

I :=
1

(∆ηπζπ)2

(

Y ηπηπ

Xζπ

I − Y ηπζπ

Xηπ

I

)

,

(3.26)

and

(∆ηπζπ)2 := ‖Xηπ ∧Xζπ‖2 ≡ Y ηπηπ

Y ζπζπ − (Y ηπζπ

)2 . (3.27)

The quantities defined in (3.26) are the dual elements to Xηπ

I and Xζπ

I such that Qηπ

I Xηπ

I =

1 = Qζπ

I Xζπ

I and Qηπ

I Xζπ

I = 0 = Qζπ

I Xηπ

I . The expression (3.27) identifies ∆ηπζπ with the

area in R
8 spanned by Xηπ ∧Xζπ

. From these definitions, it follows that P ηπζπ

IJ in (3.25)

indeed obeys P ηπζπ

IJ = P ηπζπ

JI , P ηπζπ

IK P ηπζπ

JK = P ηπζπ

IJ and P ηπζπ

IJ Xηπ

J = 0 = P ηπζπ

IJ Xζπ

J .

The scalar potential (3.23) on E has a natural expression in terms of the objects defined

in (3.25) and (3.27) as

V
E(X) = −1

2

M
∑

π=1

(∆ηπζπ)2 P ηπζπ

IJ Xaπ

I Xaπ

J . (3.28)

Furthermore, using the identity

P ηπζπ

IJ ≡ P ζπ

IJ − (∆ηπζπ)2

Y ζπζπ Qηπ

I Qηπ

J , (3.29)

allows one to reexpress the remaining terms

− 1

2

M
∑

π=1

DµX
aπ

I DµXaπ

I + L
E
CS (3.30)

in (3.21) as

M
∑

π=1

−1

2
P ηπζπ

IJ DµX
aπ

I DµXaπ

J − 1

Y ζπζπ

(

2D[µA
ζπaπ

ν]

)(

2DµAν ζπaπ

)

− 1

2

M
∑

π=1

Y ζπζπ

(∆ηπζπ)2

(

Xηπ

I P ζπ

IJ DµX
aπ

J + 2
(∆ηπζπ)2

Y ζπζπ ǫaπbπAζπbπ
µ

)

×
(

Xηπ

K P ζπ

KLDµXaπ

L + 2
(∆ηπζπ)2

Y ζπζπ ǫaπcπAµ ζπcπ

)

, (3.31)

where we have introduced the covariant derivative DΦaπ := dΦaπ + 2 ǫaπbπ dφηπζπ ∧ Φbπ

for any differential form Φaπ on R
1,2 taking values in Eπ. Similar to what we saw in

section 3.1.2, the six projected scalars P ηπζπ

IJ Xaπ

J in the first line of (3.31) do not couple to

the gauge field Aζπaπ on each Eπ. Moreover, the remaining scalar in the second line of (3.31)

can be eliminated from the lagrangian, for each Eπ, using the gauge symmetry under which

δAiaπ = DΛiaπ for any parameter Λiaπ to fix Λζπaπ = −1
2

Y ζπζπ

(∆ηπζπ )2
ǫaπbπXηπ

I P ζπ

IJ X
bπ

J . There

is a remaining gauge symmetry under which δφηπζπ
= Ληπζπ

and δΦaπ = −2Ληπζπ
ǫaπbπΦbπ

where the gauge parameter Ληπζπ
= ηπ

i ζ
π
j Λij , under which the derivative D transforms
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covariantly. This can also be fixed to set D = d on each Eπ. Notice that one has precisely

the right number of these gauge symmetries to fix all the independent projections φηπζπ

appearing in the covariant derivatives.

After doing this one combines (3.28) and (3.31) to write

L
E =

M
∑

π=1

−1

2
P ηπζπ

IJ ∂µX
aπ

I ∂µXaπ

J − 1

2
(∆ηπζπ)2P ηπζπ

IJ Xaπ

I Xaπ

J

+
M
∑

π=1

− 1

Y ζπζπ (2 ∂[µA
ζπaπ

ν] )(2 ∂[µAν] ζπaπ) − 2

Y ζπζπ (∆ηπζπ)2Aζπaπ
µ Aµ ζπaπ ,

(3.32)

describing precisely the bosonic part of the lagrangian for free decoupled abelian N = 8

massive vector supermultiplets on each Eπ, whose bosonic fields comprise the six scalars

P ηπζπ

IJ Xaπ

J and gauge field −2 1
‖Xζπ ‖

Aζπaπ , all with mass ∆ηπζπ on each Eπ. It is worth

stressing that we have presented (3.32) as a sum over all Eπ just so that the masses ∆ηπζπ

on each factor can be written more explicitly. We could equally well have presented things

in terms of a sum over the equivalence classes E[π], as in (3.24), whereby the relative

proportionality constants for the ∆ηπζπ within a given class [π] would be absorbed into the

definition of the corresponding J[π].

The lagrangian on a given Eπ in the sum (3.32) can also be obtained from the trun-

cation of an N = 8 super Yang-Mills theory with euclidean gauge algebra g via the pro-

cedure described at the end of section 3.1.2. In particular, let us identify a given Eπ

with the Cartan subalgebra of a semisimple Lie algebra g of rank two. Then we require

−‖Xζπ‖2 (ady)
2 = (∆ηπζπ)2 12 on Eπ for some constant y ∈ E⊥

π ⊂ g. In this case g must

be either su(3), so(5), so(4) or g2 and E⊥
π is identified with the root space of g whose di-

mension is 6, 8, 4 or 12 respectively. A solution in this case is to take y proportional to the

vector with only +1/-1 entries along the positive/negative roots of g. The proportionality

constant here being
∆ηπζπ√

h(g)‖Xζπ ‖
where h(g) is the dual Coxeter number of g and equals 3,

3, 2 or 4 for su(3), so(5), so(4) or g2 respectively (it is assumed that the longest root has

norm-squared equal to 2 with respect to the Killing form in each case).

Recall from [23] that several of these rank two Lie algebras are thought to corre-

spond to the gauge algebras for N = 8 super Yang-Mills theories whose IR superconformal

fixed points are described by the Bagger-Lambert theory based on S4 for two M2-branes

on R
8/Z2 (with Lie algebras so(4), so(5) and g2 corresponding to Chern-Simons levels

k = 1, 2, 3). It would interesting to understand whether there is any relation with the

aforementioned truncation beyond just numerology! The general mass formulae we have

obtained are somewhat reminiscent of equation (26) in [23] for the BLG model based on S4

which describes the mass in terms of the area of the triangle formed between the location

of the two M2-branes and the orbifold fixed point on R
8/Z2. More generally, it would be

interesting to understand whether there is a specific D-brane configuration for which L E

is the low-energy effective lagrangian?
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3.2.3 L E0

The field Aia0 appears only linearly in one term in L 0
CS and is therefore a Lagrange multi-

plier imposing the constraint Kijka0A
jk = dγia0 , where γia0 is a scalar field on R

1,2 taking

values in R
r ⊗ E0.

Substituting this condition into the lagrangian allows us to write

−1

2
DµX

a0
I DµXa0

I + L
E0
CS = − 1

2
∂µ

(

Xa0
I − γi

a0Xi
I

)

∂µ
(

Xa0
I − γj

a0Xj
I

)

− 1

3
Aij ∧ dγia0 ∧ dγja0 +

1

2
LijklA

ij ∧ dAkl .

(3.33)

The first line shows that we can simply redefine the scalars Xa0
I such that they decouple

and do not interact with any other fields in the theory.

Notice that none of the projections Aηπζπ
= dφηπζπ

of Aij that appeared in L E can

appear in the second line of (3.33) since the corresponding terms would be total deriva-

tives. Consequently, our indifference to L E0 in the gauge-fixing that was described for

L E , resulting in (3.32), was indeed legitimate. Furthermore, there can be no components

of Aij along the 2-planes in R
r spanned by the nonanishing components of Kijka0 here for

the same reason.

The contribution coming from the Chern-Simons term in the second line of (3.33)

is therefore completely decoupled from all the other terms in the lagrangian. It has

a rather unusual-looking residual gauge symmetry, inherited from that in the original

Bagger-Lambert theory, under which δγia0 = σia0 := Kia0klΛ
kl and Lijkl

(

δAkl − dΛkl
)

=

σ[i
a0dγj]a0

for any gauge parameter Λij. In addition to the second line of (3.33) being

invariant under this gauge transformation, one can easily check that so is the tensor

LijkldA
kl − dγia0 ∧ dγja0 . This is perhaps not surprising since the vanishing of this tensor

is precisely the field equation resulting from varying Aij in the second line of (3.33). The

important point though is that this gauge-invariant tensor is exact and thus the field equa-

tions resulting from the second line of (3.33) are precisely equivalent to those obtained from

an abelian Chern-Simons term for the gauge field Cij := LijklA
kl − γ[i

a0 ∧ dγj]a0
(where

the [ij] indices do not run over any 2-planes in R
r which are spanned by the nonvanishing

components of ηπ
[iζ

π
j] and Kijka0).

In summary, up to the aforementioned field redefinitions, we have found that

L
E0 = −1

2
∂µX

a0
I ∂µXa0

I +
1

2
M ijklCij ∧ dCkl , (3.34)

for some constant tensor M ijkl, which can be taken to obey M ijkl = M [ij][kl] = Mklij,

that is generically a complicated function of the components Lijkl and Kijka0. Clearly

this redefined abelian Chern-Simons term is only well-defined in a path integral provided

the components M ijkl are quantised in suitable integer units. However, since none of the

dynamical fields are charged under Cij then we conclude that the contribution from L E0

is essentially trivial.
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3.3 Examples

Let us end by briefly describing an application of this formalism to describe the unitary

gauge theory resulting from the Bagger-Lambert theory associated with two of the admis-

sible index-2 3-Lie algebras in the IIIb family from [13] that were detailed in section 2.3.

3.3.1 VIIIb(0, 0, 0, h, g, ψ)

The data needed for this in theorem 2 is κ|h = (0, 1)t, κ|gα = (ψα, 1)
t. The resulting

Bagger-Lambert lagrangian will only get a contribution from L W and describes a sum of

separate N = 8 super Yang-Mills lagrangians on h and on each factor gα, with the respec-

tive euclidean Lie algebra structures describing the gauge symmetry. The super Yang-Mills

theory on h has coupling ‖Xu2‖ and the seven scalar fields occupy the hyperplane orthog-

onal to Xu2 in R
8. Similarly, the N = 8 theory on a given gα has coupling ‖ψαX

u1 +Xu2‖
with scalars in the hyperplane orthogonal to ψαX

u1 + Xu2 . This is again generically a

super Yang-Mills theory though it degenerates to a maximally supersymmetric free theory

for all eight scalars if there are any values of α for which ψαX
u1 +Xu2 = 0.

3.3.2 VIIIb(E, J, 0, h, 0, 0)

The data needed for this in theorem 2 is κ|h = (0, 1)t and Jπ = ηπ∧ζπ where ηπ and ζπ are

2-vectors spanning R
2 for each value of π and E =

⊕M
π=1Eπ. The data comprising Jπ can

also be understood as a special case of a general admissible index r 3-Lie algebra having

all ηπ ∧ ζπ spanning the same 2-plane in R
r (when r = 2 this is unavoidable, of course).

The resulting Bagger-Lambert lagrangian will get one contribution from L W , describing

precisely the same N = 8 super Yang-Mills theory on h we saw above, and one contribution

from L E . The latter being the simplest case of the lagrangian (3.24) where there is just

one equivalence class of 2-planes spanned by all ηπ ∧ ζπ and the gauge symmetry is based

on the lorentzian Lie algebra d(E,R). The physical degrees of freedom describe free abelian

N = 8 massive vector supermultiplets on each Eπ with masses ∆ηπζπ as in (3.32). Mutatis

mutandis, this example is equivalent to the Bagger-Lambert theory resulting from the most

general finite-dimensional 3-Lie algebra example considered in section 4.3 of [18].
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